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Executive Summary 
 
The detection and remediation of munitions is one of the Department of Defense’s (DoD) most 
pressing environmental problems. The Military Munitions Response Program (MMRP) is charged 
with characterizing and, where necessary, remediating munitions-contaminated sites. When a site is 
cleaned up, it is typically mapped with a geophysical system, based on either a magnetometer or 
electromagnetic (EM) induction sensor, and the locations of all detectable signals are excavated. 
Many of these detections do not correspond to munitions, but rather to other harmless metallic 
objects or geology. Application of technology to separate the munitions from other objects, known 
as classification, offers the potential of significant cost savings for munitions response. 
 
Field experience indicates that often in excess of 90% of objects excavated during the course of a 
munitions response are found to be nonhazardous items. Current technology, as it is commonly 
implemented, does not provide a physics-based, quantitative, validated means to discriminate 
between hazardous munitions and nonhazardous items. With no information to suggest the origin 
of the signals, all anomalies currently are carefully excavated by certified unexploded ordnance 
(UXO) technicians using a process that often requires expensive safety measures, such as barriers or 
exclusion zones. As a result, most of the costs to remediate a munitions-contaminated site are 
currently spent on excavating targets that pose no threat. If these items could be determined with 
high confidence to be nonhazardous, some of these expensive measures could be eliminated or the 
items could be left unexcavated entirely. 
 
Classification is a process used to make a decision about the likely origin of a signal. In the case of 
munitions response, high-quality geophysical data can be interpreted with physics-based models to 
estimate parameters that may be useful for classification. The parameters in these models are related 
to the physical attributes of the object that resulted in the signal, such as its physical size and aspect 
ratio. The geophysical data can be analyzed to estimate the values of these parameters, which may 
then be used to estimate the likelihood that the signal arose from an item of interest, that is, a 
munition. 
 
The first demonstration of the ESTCP pilot program was conducted on the former Camp Sibert, 
AL. This site was used for 4.2-inch mortar training in World War II. It has generally benign 
topography and vegetation, allowing the collection of high-quality geophysics data, and benign to 
moderate geology. Data were collected with several commercial and emerging magnetic and 
electromagnetic sensors, and researchers applied classification algorithms to these data to make a 
determination about whether each item detected was likely to arise from a munitions item or clutter 
object. All the detected objects were carefully excavated to provide ground truth information to 
allow for algorithm training and blind testing of the classification approaches. The main objective 
was for the classifiers to correctly identify with high confidence the detected objects that were not 
hazardous. As such, the main failure was considered to be any error where a munitions object was 
declared with high confidence to be nonhazardous. 
 
The pilot program demonstrated successful classification on this simple site. With carefully collected 
survey data from either magnetometers or EM sensors and transitioning physics-based analysis 
techniques, well over half the detected clutter items were routinely eliminated with high confidence, 
while retaining all the munitions. Table ES-1 shows example results from the Camp Sibert 
demonstration for classification algorithms applied to data collected with four systems: a 
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magnetometer, an EM61-MK2 CART, and EM61-MK2 array, and a next-generation EM sensor 
(BUD). In all cases, the classification processing correctly identified all or nearly all the munitions 
and a significant fraction of the clutter was successfully identified as such with high confidence. 
Classification processing, applied to data from the commercial instruments, eliminated 45%–70% of 
the clutter in these examples. When advanced emerging EM sensors were used, nearly perfect results 
were achieved. 
 

Table ES-1. Example classification results from the Camp Sibert demonstration 

Sensor/Performer # Munitions 
% Munitions 

Correctly Identified

# Non-
munitions 
Detected 

% Non-munitions 
Correctly 
Identified 

Mag Array/Sky 
Research 118 100 615 44 

EM61-MK2 
Cart/Parsons 145 99 488 44 

EM61-MK2 
Array/SAIC, Inc. 119 99 615 72 

BUD/Lawrence 
Berkeley National 
Laboratory 

56 100 209 97 

 
 
Realizing the potential advantages of classification requires formulating a model for its application 
that will be accepted by all stakeholders. The study described in this report relied on a retrospective 
analysis of demonstrator performance. Classification on a production site would need to proceed in 
a prospective rather than retrospective model. Truth information that would allow one to determine 
whether each individual item was correctly classified as munitions or clutter will not be available if 
the clutter is not dug up. The program advisory group considered how a site team might proceed 
with a dig program, specifically, how to decide when to stop digging when classification is used. 
 
The MMRP is severely constrained by available resources. Remediation of the entire inventory using 
current practices is cost prohibitive, within current and anticipated funding levels. With current 
planning, estimated completion dates for munitions response on many sites are decades out. If the 
savings potential of applying classification technologies were realized, the limited resources of the 
MMRP could be used to accelerate the cleanup of munitions response sites that are currently 
forecast to be untouched for decades. 
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1 INTRODUCTION 

1.1 BACKGROUND 
Munitions response is a high-priority problem for the Department of Defense (DoD). 
Approximately 3000 sites, comprising tens of millions of acres, are suspected of contamination with 
military munitions, include unexploded ordnance (UXO) and discarded military munitions. (Ref. 1) 
The bulk of these are formerly used defense sites (FUDS), which are no longer under DoD control, 
and are used for a variety of purposes, including residential development, recreation, grazing, and 
parkland, often without restriction. 
 
The Military Munitions Response Program (MMRP) is charged with characterizing and, where 
necessary, remediating munitions-contaminated sites. When a site is cleaned up, it is typically 
mapped with a geophysical system, based on either a magnetometer or electromagnetic (EM) 
induction sensor, and the locations of all detectable signals are excavated. Many of these detections 
do not correspond to munitions, but rather to other harmless metallic objects or geology, termed 
clutter: field experience indicates that often in excess of 90% of objects excavated during the course 
of a munitions response are found to be nonhazardous items. Current technology, as it is commonly 
implemented, does not provide a physics-based, quantitative, validated means to discriminate 
between hazardous munitions and nonhazardous items.  
 
With no information to suggest the origin of the signals, all anomalies are currently treated as though 
they are intact munitions when they are dug. They are carefully excavated by certified UXO 
technicians using a process that often requires expensive safety measures, such as barriers or 
exclusion zones. As a result, most of the costs to remediate a munitions-contaminated site are 
currently spent on excavating targets that pose no threat. If these items could be determined with 
high confidence to be nonhazardous, some of these expensive measures could be eliminated or the 
items could be left unexcavated entirely. 
 
The MMRP is severely constrained by available resources. Remediation of the entire inventory using 
current practices is cost prohibitive, within current and anticipated funding levels. With current 
planning, estimated completion dates for munitions response on many sites are decades out. The 
Defense Science Board (DSB) observed in its 2003 report that significant cost savings could be 
realized if successful classification between munitions and other sources of anomalies could be 
implemented. (Ref. 2) If these savings were realized, the limited resources of the MMRP could be 
used to accelerate the clean up of munitions response sites that are currently forecast to be 
untouched for decades. 

1.2 CLASSIFICATION CONCEPT 
Classification is a process used to make a decision about the likely origin of a signal. In the case of 
munitions response, high-quality geophysical data can be interpreted with physics-based models to 
estimate parameters that may be useful for classification. The parameters in these models are related 
to the physical attributes of the object that resulted in the signal, such as its physical size and aspect 
ratio. The values of these parameters may then be used to estimate the likelihood that the signal 
arose from an item of interest, that is, a munition. 
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Magnetometer data are typically fit using a simple model of a single dipole moment, which is related 
to the physical size of the object. EM data are fit to a more complex three-axis polarizability model 
that can yield a larger set of parameters that more completely describe the source of the signal. 
Figure 1-1 illustrates schematically the EM measurement. The three-axis response model is indicated 
by the heavy arrows in the right panel of the figure, which shows responses along the three 
perpendicular principal axes of the munition. The EM parameters relate to the physical size of the 
object, its aspect ratio, the wall thickness, and the material properties.  
 
 

 
 

Figure 1-1. Schematic of EM measurement and three-axis electromagnetic response 
 
 
Munitions are typically long, narrow cylindrical shapes that are made of heavy-walled steel. Common 
clutter objects can derive from military uses and include exploded parts of targets, such as vehicles, 
as well as munitions fragments, fins, base plates, nose cones and other munitions parts. Other 
common clutter objects are man-made nonmilitary items. While the types of objects that can 
possibly be encountered are nearly limitless, common items include barbed wire, horseshoes, nails, 
hand tools, and rebar. These objects and geology give rise to signals that will differ from munitions 
in the parameter values that are estimated from geophysics data.  
 
Once the parameters are estimated, a means must be found to sort the signals to identify items of 
interest, in this case munitions, from the clutter. This is termed classification. In a simple situation, 
one can imagine sorting items based on a single parameter, such as object size. A rule could be made 
that all objects with an estimated size larger than some value will be treated as potentially munitions 
items of interest, such as large bombs, and those smaller could not possibly correspond to intact 
munitions.  
 
In reality, few classification problems can be handled successfully based on a single parameter. 
Because the parameter-estimation process is imperfect and the physical sizes of the objects of 
interest may overlap with the sizes of the clutter objects, it is rare to get perfect separation based on 
one parameter. For complex problems, sophisticated statistical classifiers can combine the 
information from multiple parameters to make a quantitative estimate of the likelihood that a signal 
corresponds to an object of interest.  
 

 

Transmitter 
Receiver

Transmitter ON Transmitter OFF

L1 

L2 L3
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1.3 ESTCP PILOT PROGRAM 
 
The Environmental Security Technology Certification Program (ESTCP) is charged with promoting 
innovative, cost-effective environmental technologies by demonstrating and validating those 
technologies. In response to the DSB Task Force report (Ref. 2) and Congressional interest, ESTCP 
initiated a Classification Pilot Program to validate the application of a number of recently developed 
technologies in a comprehensive approach to munitions response. 
 
Some form of classification is used on all munitions response projects, most often implicitly. In the 
case of traditional “mag and flag,” the operator adjusts the sensitivity audio control and makes a 
decision as to whether each signal is significant. Since no data are recorded, these decisions can 
never be reviewed. In the case of digital geophysical mapping, a threshold is selected for determining 
targets of interest, and often a geophysicist uses professional judgment to decide based on a visual 
inspection of shape and amplitude whether anomalies are likely to arise from geology or compact 
metallic objects. In both cases, the sources of signals deemed insignificant are not further 
investigated and remain in the ground. 
 
Significant progress has been made in explicit classification technology. To date, emerging 
technologies have primarily been tested at constructed test sites, with only limited application at live 
sites. The routine implementation of classification technologies will require demonstrations at real 
munitions response sites under real-world conditions. Any attempt to declare detected anomalies to 
be harmless will require demonstration to regulators, safety personnel, and project managers of not 
only individual technologies, but an entire decision-making process.  
 
The goal of the pilot program is to demonstrate that classification decisions can be made explicitly, 
based on principled physics-based analysis that is transparent and reproducible. As such, the 
objectives of the pilot program were to:  

• Test and validate detection and classification capabilities of currently available and emerging 
technologies on a real site under operational conditions, and  

• Investigate how classification technologies can be implemented in cleanup operations in 
cooperation with regulators and program managers. 

 
To address the second of those objectives, a Program Advisory Group composed of representatives 
of the Services and State and National regulators was established at the beginning of the program. 
This Advisory Group was involved in site selection, program design, data review, and the 
development of conclusions. The Advisory Group has been heavily involved in drafting this report. 
 
The Former Camp Sibert in Alabama was selected as the first pilot site with success in mind. This 
site presented a single munitions type (the 4.2-inch mortar) and benign conditions where high-
quality data could be collected. The motivation of this selection was to demonstrate a process under 
conditions where the technologies were expected to perform well, so that the advisory group could 
have a meaningful discussion regarding the application of successful classification. This classification 
study has been the first phase in what is expected to be a continuing effort that will span several 
years and investigate sites with increasing challenges.  
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1.4 ABOUT THIS REPORT 
This report is intended to provide an overview of the key results of this pilot program for project 
managers, regulators and contractors. The focus of this report is on commercial instruments and 
available processing. Because of their dramatic success, we make a few observations about the 
potential of specialized emerging sensors. However, the material covered in this report represents 
only a small part of a much larger study, and notably absent here is any discussion of advanced and 
innovative processing techniques. More information about the entire demonstration and these topics 
in particular may be found in the individual demonstrator reports (Refs. 3–6) and an independent 
performance assessment by the Institute for Defense Analyses. (Ref. 7) 
 
We begin with a description of the site and an overview of the program approach. We then describe 
the detection and classification performance. As a key factor in successful analysis is the data quality, 
a section is devoted to this subject. This is followed by a discussion of costs and a summary of the 
program conclusions. Finally, we consider how classification could be implemented on a real site. 
 



 7

2 FORMER CAMP SIBERT 

2.1 TEST SITE OBJECTIVES  
The former Camp Sibert, Alabama was selected for this study. The site has generally flat terrain, 
limited vegetation, limited to moderate geologic interference, a simple clutter environment, and most 
importantly a single munitions type. The demonstration area (Figures 2-1 and 2-2) was selected on a 
section of a known target a sufficient distance from the target center where the average anomaly 
density was low enough to allow for classification of individual items.  
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Figure 2-1. The former Camp Sibert Classification study area located on Site 18. 

 
 

  
 
 

Figure 2-2. Former Camp Sibert Classification study area. 

2.2 SITE HISTORY AND CHARACTERISTICS 
The former Camp Sibert consisted of 37,035 acres in Etowah and St. Clair counties acquired by the 
U.S. Army in July 1942. Historical records and investigation of the site indicate that Camp Sibert was 
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used extensively as the main training camp for chemical warfare troops during World War II. As 
part of this training, troops fired large quantities of conventional and chemical munitions and 
handled live chemical agents during their training in chemical storage, weapons filling, and 
decontamination of equipment. During the investigation of historical records, numerous areas were 
identified as possible contaminated sites. (Ref. 8) 
 
The camp was closed at the end of the war in 1945, and the chemical school transferred to Ft. 
McClellan, Alabama. The Army declared the property excess and transferred it to the War Assets 
Administration on 18 November 1946, and then to the Farm Mortgage Corporation. The 
government terminated the leases on the area on 13 December 1946. After decontamination of 
various ranges and toxic areas in 1948, the land was transferred to private ownership. The airfield 
was transferred to the City of Gadsden and is now the Gadsden Municipal Airport. The majority of 
the property has been privately owned since 1949 and either farmed or left as woodlands.  
 
The Classification Study site is located within the confines of Site #18, Japanese Pillbox Area No. 2. 
Simulated pillbox fortifications were attacked first with white phosphorous 4.2-inch chemical 
mortars followed by troop advance and another volley of high explosive-filled 4.2-inch mortars. 
Assault troops would then attack the pillboxes using machine guns, flamethrowers, and grenades. 
There is historical evidence of intact 4.2-inch mortars and associated debris at the site. A limited 
geophysical survey of Site 18 was conducted prior to this study as part of the ongoing munitions 
response process and multiple anomalies were identified. (Ref. 9) 

2.3 STUDY SITE OVERVIEW  
The Classification Study site was chosen to be outside of the high density target center. Three areas 
(SW, SE 1, and SE 2) totaling 15 acres were selected to make up the final study area as seen in 
Figure 2-1 and their locations in relation to the historical target are noted. The locations of these 
areas were determined from results of a pre-demonstration magnetometer survey discussed below. 

2.4 DEMONSTRATION PREPARATION  
Several activities occurred prior to data collection to ensure the resulting data would support a 
successful demonstration. These activities include an initial magnetometer survey, excavation of a 
100 foot × 100 foot site characterization grid, construction of a geophysical prove out (GPO), and 
emplacement of seed targets. 

2.4.1 Initial Magnetometer Survey 
A 100% coverage magnetometer array survey was conducted on about 50-acres of Site 18 to guide 
selection of the final 15-acre demonstration study area. The main objective was to select a study area 
with anomaly density between 100 and 200 anomalies per acre. This density would provide a 
sufficient number of targets to support statistical analysis of the results, while still allowing for 
successful classification of isolated targets. Three noncontiguous areas were chosen to make up the 
demonstration site. The two southeast areas (SE 1 and SE 2) were found to be within the desired 
density range. The density in SW was above this range due to local geology.  
 
In addition, the initial magnetometer survey was used to guide selection of locations for the GPO, 
the 100 foot × 100 foot site characterization grid, and the seed targets.  
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2.4.2 Site Characterization Grid 

A 100 foot × 100 foot site characterization grid was excavated to provide information about the 
types and depths of munitions and clutter on the site. The grid was selected near the target center 
where anomaly densities were higher to provide the maximum information about the items on the 
site. A total of 302 anomalies identified in the initial magnetometer data were dug, and information 
regarding the identification and depth of the recovered objects was provided as training data to the 
demonstrators that were applying classification approaches. The items were separated into classes 
shown in Table 2-1, and examples of the excavated items are shown in Figure 2-3. All the recovered 
munitions debris was associated with the 4.2-inch mortar, and no evidence was found to indicate 
that any other munitions types were present. It was intended that the depth information from the 
recovered items would be used to help guide the depth distribution of the seeded items. However, 
due to schedule constraints, their excavation was not completed prior to seeding the study areas, and 
only one intact mortar was ultimately recovered.  

 
Table 2-1. Class of items excavated from the site characterization grid. 

 
Class Number 

Intact Mortar 1 

Munitions Debris 134 

Cultural Debris 3 

Hot Soil/No Contact 164 

 

   
 

Figure 2-3. Items recovered during the excavation of the site characterization grid. A baseplate is on the 
left and an intact mortar is on the right. 

2.4.3 Geophysical Prove Out 
A GPO was established to verify detection thresholds for all instruments. The intent of the GPO 
was to verify that the targets of interest were detected at the depths of interest at the selected 
threshold under site-specific conditions. For each sensor, the threshold used to select the target list 
on the demonstration site was verified using the GPO results.  
 
The location of the 50 m × 50 m GPO was chosen from the initial magnetometer survey. All items 
detected in the initial magnetometer survey of this area were excavated, and then the area was re-
surveyed using an EM-61 cart, and any new detections were also excavated. The area was then 



 10

seeded with inert 4.2-inch mortars, the munitions known to have been used on this site. The seeded 
mortars used in the study were recovered from a site in Montana. The GPO contained 38 targets, 
distributed as shown in Table 2-2: 30 were inert 4.2-inch mortars and 8 were splayed half-rounds 
(recovered at Camp Sibert), which were expected to be a common clutter item. The locations and 
depths of these targets were unknown to the data collectors. The burial depths were biased shallow 
to provide high signal-to-noise training data for classification teams. A few rounds are buried to a 
depth of 11 times their diameter, the de facto expectation for detectability with modern geophysical 
equipment, to verify detection by the geophysical sensors. Targets were separated by a minimum of 
6 m in all directions, and the target locations were not on a regular grid.  
 

Table 2-2. GPO targets. 

Munition type Quantity Depth Range Orientations 

4.2-inch inert mortar 
rounds 30 Flush buried to 1.17 m 

Random orientations, predominantly 
from ±45° from horizontal, few vertical 

targets 

4.2-inch mortar 
splayed, half-rounds 8 0.1 to 0.43 m Either flat or on edge 

2.4.4 Test Pit Measurements 
A 1-m deep test pit was dug near the site for the use of the demonstrators and an example 4.2-inch 
mortar provided. Prior to beginning survey operations, each of the data collection demonstrators 
used the pit to collect signatures from the mortar at a variety of depths and orientations. These data 
were used to establish the detection thresholds for each sensor and as training data for the analysis 
demonstrators. 

2.4.5 Seeding the Survey Area 
The demonstration area was seeded with 151 recovered inert 4.2-inch mortars. Two of the 151 seed 
mortars were buried in locations where they formed a cluster with either an existing clutter object or 
a geological return. These two mortars were removed from all subsequent analysis, as were all 
clusters with overlapping signatures. The scoring throughout was done using the 149 isolated 
mortars. The locations and depths of these targets were unknown to the demonstrators. The exact 
(x, y) location, depth to the center of the target, and orientation were recorded for each emplaced 
item. Objects were not emplaced at depths in excess of 11 times their diameter, 1.17 m for the 
4.2-inch mortar rounds. The emplacement distribution of these inert rounds is summarized in Table 
2-3. Only in situ clutter was used in this study, and no additional cultural clutter, munitions-related 
scrap, or geology was seeded.  

Table 2-3. Blind seeded targets. 

Munition type Quantity Depth Range Orientations 

4.2-inch inert mortar 
rounds 151 Flush buried to 1.17 m Random orientations, predominantly from 

±45° from horizontal, few vertical targets 
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3 PROGRAM DESIGN 

3.1 OVERALL APPROACH 
The objective of the study was to evaluate classification, as opposed to detection. Multiple 
classification approaches were applied to data collected using seven different sensor platforms. For 
comparisons of different classification approaches to be straightforward, a common set of 
detections for each data set was required. The detection stage was done by a program office team 
that was separate from the data processors. The approach to detection is described below. For each 
data set, a common list was passed to all of the classification demonstrators set to attempt 
classification. The classifiers were required to make a declaration for each anomaly detected in each 
data set that they elected to analyze. 
 
All the targets on the detection lists were dug and assigned ground-truth labels. These labeled data, 
including the seeded targets, were segregated into training and testing data. All the truth information 
for the training data was provided to the processors and used to train their algorithms. The truth 
labels for the remaining data were sequestered, and these were used for blind testing. The processors 
were required to provide their assessment of the munitions/clutter labels for each item in the test 
data part of the detection list. The labels were compared to truth by an independent third party to 
score performance. 
 

3.2 EVALUATING SUCCESS 
The main goal for classification in the pilot program was to identify items that were NOT 
MUNITIONS with high confidence. For stakeholders to find it acceptable to treat a detected 
anomaly as something other than a potential munitions item—that is, to forego safety measures or 
leave an item unexcavated—these determinations must be very certain. Thus, for the purposes of 
this demonstration, the main failure was misclassifying a target of interest (4.2-inch mortar) as a 
nonhazardous item. This is commonly termed a false negative.  
 
Evaluating the performance in the demonstration required that the objects uncovered be divided 
into TARGETS OF INTEREST and CLUTTER.  
 
TARGETS OF INTEREST: The only munitions type expected on the site was the 4.2-inch mortar. 
Since it is not possible to discriminate explosive from practice rounds using the methods 
demonstrated and since a practice round would concern the public in the same way that an intact 
high-explosive round would, a TARGET OF INTEREST for the purposes of the pilot program 
was defined to include: 

• Intact 4.2-inch mortars, both high explosive and practice; 
• Sizeable pieces of the mortars, which would be sufficiently munitions-like to alarm the 

public; and 
• Items with a geophysical signature that is indistinguishable from munitions (i.e., steel pipes 

of similar size). 
During the demonstration, no intact munitions were found and no pipe-like items were found. The 
largest pieces of munitions found were so-called half rounds, which were large, flattened objects 
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formed when the mortars split along their long axes. These were not at all munitions-like in their 
appearance.  
 
CLUTTER: Clutter items included fragments, splayed half rounds, single fins, nose cones, base 
plates, cultural debris, and geology. 
 
Prior to the demonstration, it was decided that hazardous components of munitions, such as fuzes, 
spotting charges, and bursters, while not the main focus of the demonstration, would be treated in a 
separate post-demonstration analysis. Ultimately, none of these component items were found, and 
this aspect of the classification problem could not be explored. Similarly, it was also unknown 
whether any grenades would be found. The historical records indicated they had possibly been used, 
but no physical evidence had been seen. Neither grenades nor grenade fragments were found in the 
classification grid, nor in all the ground-truth items dug, so the only item of interest remained the 
4.2-inch mortar. 

3.3 DATA COLLECTION 
The classification pilot study consisted of several combinations of data-collection platforms and 
analysis approaches, ranging from careful application of commercial survey instruments to a 
prototype system specially designed to maximize detection and classification of munitions. The 
commercial survey systems were deployed to collect data on 100% of the site, called SURVEY 
mode. Three sensors were deployed to collect high-density data over selected individual anomalies, 
detected by other sensors, called CUED mode. Data-collection plans were generated by all data 
collectors and shared with the data processors prior to deployment.  
 
In survey mode, the following sensors covered 100% of the site. Data were acquired by running a 
sensor in closely spaced lines, similar to the pattern of a lawnmower cutting grass. Care was taken 
when designing the data-collection protocols to ensure that data of a sufficient quality to support 
advanced analyses would result. For the most part, this involved controlling data density and system 
noise.  
 

o EM61-MK2 CART: The on-site contractor, Parsons, used a standard cart platform 
EM61-MK2 system. Typical industry-standard centimeter-level accuracy Global 
Positioning System (GPS) equipment was used for geolocation and navigation. The 
survey lane spacing was specified as 0.5 m, compared to the 1 m lane spacing used 
on the production work on other parts of Camp Sibert. The sensor height above 
ground was the standard 40 cm. Figure 3-1a shows this system, which will be 
referred to throughout the report as EM61-MK2 CART. (Ref. 10) 

o Multisensor Towed Array Detection System (MTADS): Three towed-array 
systems from the MTADS family developed by the Naval Research Laboratory 
(NRL) were used. For all, data were taken in the MTADS standard configuration 
using centimeter-level accuracy GPS and an Inertial Measurement Unit (IMU) for 
geolocation and platform orientation. (Ref. 11) 

• EM61-MK2 array: The MTADS EM system uses an array of three 
overlapping 1 m2 EM61-MK2 sensors that have been modified to increase 
the transmit current and adjust the receiver time gates from the standard 
sensor. The three sensors are pulsed and sampled simultaneously. Data are 
collected with 0.5-m line spacing and the array rides 33.5 cm above the 
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ground surface. Figure 3-1b shows this system, which is referred to 
throughout the report at EM61-MK2 ARRAY. 

• Magnetometer array: The MTADS magnetometer (MAG ARRAY) 
platform houses a 2-m wide array of eight G-822A Cs vapor magnetometers, 
spaced 25 cm apart and 25 cm off the ground.  

• GEMTADS: The NRL GEMTADS incorporates an array of three 
frequency domain 96-cm diameter GEM-3 sensors arranged with two side by 
side and one centered and offset to the rear, for an effective side-to-side 
spacing of 0.5 m. The sensors have been modified to increase transmit 
current and are sampled sequentially. Data are collected at 33.5 cm height 
above ground.  

 
Figure 3-2 shows an example of the EM61-MK2 ARRAY data from the GPO. The locations of the 
seeded mortars and half shells are marked over the data. 

 

  
 (a) (b) 
Figure 3-1. Panel (a) shows the EM61-MK2 CART system and Panel (b) the EM61-MK2 ARRAY system. 
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In a cued mode, the following sensors were used to collect high-density data on approximately 200 
anomalies selected from the survey data. Targets were selected to capture a representative sample of 
fit quality, sizes, and depths as estimated from the survey data. Both sensors gathered data on the 
same set of targets. 
 

o EM63: The EM63 is a 26-channel time-domain EM instrument. It was deployed on 
an air-suspension cart to gather high-density cued data in a precise pattern centered 
over the selected targets. It used Robotic Total Station (laser) for positioning and an 
IMU for orientation. (Ref. 12) Figure 3-3 shows the cued EM63 data collection. 

 

 
Figure 3-3. Cued EM63 data collection. 

 
 

o Hand-Held GEM-3: This frequency-domain EM sensor was used in cued mode to 
gather data over grid of static points for each anomaly. A template was used for 
positioning the data collection locations. 

 
The Lawrence Berkeley National Laboratory (LBNL) UXO Discriminator (BUD) operated in both a 
survey and cued mode: 
 

o BUD: This developmental EM cart system was designed to collect sufficient data to 
fully characterize the EM signature from a single measurement location. It is 
composed of three orthogonal transmitters for target illumination, and eight pairs of 
differenced receivers for response recording. It measures the entire decay curve up to 
1.2 ms after the transmitters are turned off. It surveyed about 5 acres of the site in 
survey mode and also collected data on all the cued targets in the remainder of the 
site. A photo and schematic of BUD are shown in Figure 3-4 (Ref. 6) 

 
MAG AND FLAG: A mag-and-flag survey was conducted on a portion of the site to provide a 
point of comparison. The on-site contractor performed a typical operation with instructions to 
detect all of the targets of interest. (Ref. 10) All flag locations were dug and scored as though they 
had been declared potential targets of interest by the operators. No follow-on classification was 
possible. 
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ReceiversTransmitters ReceiversTransmitters ReceiversTransmitters

 
 

Figure 3-4. Photo and schematic of BUD. 

3.4 CLASSIFICATION APPROACHES 
Four groups demonstrated processing approaches. The basic classification method for all the 
demonstrators involved using a geophysical model to estimate target parameters that may be useful 
in making a classification decision. For all the sensors except BUD, this process involves using data 
from multiple spatially diverse locations that together fully characterize the signature. An example of 
a small section of field data encompassing an anomaly, called a data chip, is shown on the left panel 
of Figure 3-5. During the processing, the field data are used to extract the values of the model 
parameters. The right panel shows the modeled chip, which depicts the anomaly as it is predicted 
using the best fitted parameter values. When meaningful parameter values are arrived at, the two 
should look substantially similar. 
 
BUD collects sufficient data at a single spatial location to support model-based parameter 
estimation. Although the processing approaches differ in their manner of implementation, all are 
based on a dipole model.  
 
Some of the parameters that were considered included: 

• The magnetic dipole moment, which is related to the physical size of the object; 
• The magnetic polarizability, which relates to the object’s size and aspect ratio; and  
• The electromagnetic decay constant, which relates to the object’s material properties and 

wall thickness. 
Here the estimated size of the object should not be confused with the spatial size or footprint of the 
anomaly. While it is true that large, deep objects will give rise to anomalies with a greater spatial 
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dimension than small, shallow objects that may have comparable amplitudes, anomaly size is not a 
rigorous, direct substitute for object size. 
 

 
 

Figure 3-5. Example of a measured EM61-MK2 data chip of an anomaly (left) and a model result (right). 
Axes’ units are in meters. 

 
The basic flow of the classification approaches was the same for all demonstrators and is 
summarized in the flow chart in Figure 3-6. The classification demonstrators began with target lists 
provided by the program office. These lists contained all the anomalies detected by each sensor, as 
described in Section 4. Each anomaly was analyzed by the processing teams to extract parameters by 
fitting the data to a model. Inadequacies in the model, noise in the data, or difficulty in the 
mathematical process used to fit multiple parameters to the measured data will result in variation in 
these parameter estimates. Sometimes noisy data or a model insufficiency will yield a result that is 
nonsensical or will cause the estimation process to fail to converge on an answer at all. Although the 
demonstrators were requested to provide estimated parameters for each target analyzed, in some 
cases where meaningful fits could be not be obtained, items were identified as “Can’t Analyze.” 
Since no classification decision can be made, all items in this category must be treated as potential 
munitions. 
 
Some of the truth data was provided to each demonstrator for algorithm training, so that the 
parameters that were most useful for classification could be determined. It is expected that some 
parameters will be more useful than others: on this site, with large munitions of interest, it was 
expected that the size-related parameters would be particularly useful.  
 
Once the parameters are estimated, a mechanism is needed to decide whether the corresponding 
object is a target of interest or not. Several types of classification processing schemes were evaluated 
in the classification study. These included both  

• Statistical classification: Computer algorithms evaluate the contributions of each parameter 
to defining munitions likeness based on “training” on a subset of the data for which the 
identities of the objects are known. Then the unknown objects are prioritized based on 
whether their parameters are statistically similar to known objects in the training data. 
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• Rule-based classification: A data analyst inspects the training data and the associated 
parameters to make a “rule” about how unknown objects will be sorted. For example, a rule 
may be defined so that all objects are sorted based on their “size” and decay constant.  

 
Data Collection

Training Data

Parameter Estimation Parameter Estimation

Classifier Training Apply Classifier

Finalize
Classifier Rules

Prioritized Dig List
Threshold Selection

Test Data

Validation Dig
Ground Truth

Target Detection

 
Figure 3-6. Work flow of classification demonstrations. 

 
The final step in classification is delineating the items of interest from those that are not. For 
example, in the case of a statistical classifier, all the anomalies are ordered by the likelihood that they 
belong to the class of the targets of interest. These likelihood values do not represent a yes/no 
answer, but rather a continuum within which a dividing line or threshold must be specified. 
Depending on the application, this threshold may be set to try to avoid false positives, which may 
come at the expense of missing some items of interest, or it may be set to try to avoid false 
negatives, which will come at the expense of a greater number of items not of interest. In this 
program, where missing an item of interest represented the most serious failure, demonstrators 
selected thresholds to try to retain all the detected munitions.  
 
Table 3.1 provides a summary of the classification approaches demonstrated. Those in bold are 
discussed in this report. The focus of this report is on commercial instruments and available 
processing that were successfully demonstrated and could be implemented today. Because of their 
dramatic success, we make a few observations about the potential of specialized emerging sensors. 
However, the material covered in this report represents only a small part of a much larger study, and 
notably absent here is any discussion of advanced and innovative processing techniques. Details of 
each approach and all of the results can be found in the individual demonstrator reports. (Refs. 3–6) 

3.5 GROUND TRUTH 
All targets detected by all sensors were dug up and identified to provide truth data. A master 
excavation list was produced by the Program Office from the union of the anomalies from the three 
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survey data sets (EM61-MK2 ARRAY, MAG ARRAY and GEMTADS). Duplicate detections were 
consolidated. Additional anomalies from the EM61-MK2 CART, BUD, and MAG&FLAG surveys 
were added. Clusters of overlapping anomalies were dug to provide data for future advanced 
processing research, but these data were not used for evaluating the performance in this study. No 
attempt was made to do classification on targets with overlapping signatures. For each anomaly, the 
location, depth, and description were recorded and a digital photo was taken. Each excavated item 
was then assigned to a class of either target of interest or clutter. 
 
Table 3-1. Data-processing approaches demonstrated in the pilot program.1 

Demonstrator Data Analyzed Processing Approach Summary 

LBNL BUD • Custom software for extraction of polarizabilities for the 
entire measured EM signal decay 

• Rules-based classification: library match to 4.2-inch 
mortar 

SAIC, Inc. EM61-MK2 Cart 

EM61-MK2 Array 

MAG Array 

GEM Array 

• UX Analyze beta version: routines transitioning to Geosoft 
Oasis for fitting MAG and EM61-MK2 data 

• Statistical classifier 

• Custom software for improved parameter extraction 

• GEM custom analysis and library match 

Sky Research EM61-MK2 Cart 

EM61-MK2 Array 

MAG Array 

EM63 Cued 

• UXO Lab: collection of geophysics analysis software for 
fitting MAG and EM61-MK2 data 

• Rules-based classifier based on size and decay constant 

• UXO Lab for EM63 data 

• Cooperative inversion of MAG and EM data combinations  

• Statistical Classifier 

Signal 
Innovations 
Group 

EM61-MK2 Cart 

EM61-MK2 Array 

MAG Array 

GEM Array  

EM63 Cued 

• Custom software for extraction of parameters 

• Multiple statistical classifiers, supervised and semi-supervised 

• Traditional and Active Learning Training 

Parsons EM61-MK2 Cart • UXAnalyze for parameter extraction 

• Decision rule based on size and fit quality 
1The items in bold are discussed in detail in this report. 

 
3.6 CLASSIFICATION PRODUCT 
Demonstrators were asked to produce a ranked dig list for each sensor and processing combination 
as their primary product. These lists were constructed as shown in Table 3.2 
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Table 3.2. Model of Ranked Dig List. 

Rank Comment 

1  

2 High confidence NOT munition  

3  

…  

… Can’t make a decision – clutter like 

…  

…  

… Can’t make a decision – munitions like  

…  

…  

… High confidence munitions  

…  

N-2  

N-1 Can’t extract reliable features  

N  
 

• GREEN: The top item in the list was that which the demonstrator was most certain 
does NOT correspond to a munitions item.  

• RED: The bottom items were those that the demonstrator was most certain are 
munitions.  

• YELLOW: A band was specified indicating the targets where the data can be fit in a 
meaningful way, but the derived parameters do not permit a conclusion. 

• GRAY: Targets where the signal-to-noise ratio (SNR), data quality, or other factors 
prevent any meaningful analysis were deemed “can’t analyze” and appended to the 
bottom of the list.  

• THRESHOLD: A threshold was set at the point beyond which the demonstrator 
would recommend all anomalies be treated as munitions, either because they are 
determined to be so with high confidence or because a high-confidence determination 
that they are not munitions cannot be made. This is indicated by the heavy black 
dashed line. 

3.7 SCORING METHODS 
The demonstration was scored based on the demonstrator’s ability to eliminate nonhazardous items 
while retaining all detected munitions. A common way to evaluate performance of detection and 
classification is the receiver operating characteristic (ROC) curve. An example in shown in Figure 
3-7. The ROC curve is a plot of the probability of detecting and correctly classifying the munitions 
items versus the number of false positives (clutter targets). A perfect detector and classifier would 
detect 100% of the munitions and no clutter.  
 

THRESHOLD 
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Figure 3-7. Example receiver operating characteristic curve. 

 
The key regions to interpret the ROC curves used in this program are: 

• A: In the absence of any classification, this sensor detected all the munitions and had more 
than 450 clutter items in the detection list. 

• B: Based on classification, this is the demonstrator’s threshold for the dividing point 
between munitions and not munitions. This demonstrator correctly identified all of the 
munitions and about 185 clutter items remained after classification. 

• C: Targets to the left of this point were categorized as can’t analyze and would need to be 
treated as potential munitions because no meaningful classification could be done. In this 
example, about 50 of the can’t analyze targets were false positives, reflected in where the 
curve starts in the horizontal axis at about 50. Fourteen munitions (of the 149 munitions 
seeded) were also included in the can’t analyze list, reflected in the curve beginning at 10% 
on the vertical axis. 

 



 21

4 DETECTION 

4.1 ANOMALY–SELECTION THRESHOLD 
The anomaly-selection phase of the demonstration was handled by the ESTCP Program Office team 
for all sensors except the BUD. To allow for comparisons of the classification approaches that were 
not confused by differences in setting detection thresholds, all processing demonstrators were asked 
to classify a common set of targets for each sensor. A detection list was generated by recording all 
locations for which the sensor signal exceeded a sensor-specific threshold. Since these individual 
sensor detection lists were the basis for all subsequent analyses in the demonstration, the detection 
threshold was set using a rigorous process. 
 
The target of interest in this demonstration is a 4.2-inch mortar. Using the rule of thumb that an 
item is expected to be detected routinely at a depth equal to 11 times its diameter, the depth of 
interest for this was set at 117 cm. The signal from each sensor can be predicted accurately for this 
item of interest as a function of depth, and the detection threshold set to ensure detection of all 4.2-
inch mortars while leaving smaller targets off the list. This is illustrated for the magnetometers in 
Figure 4-1, where the predicted peak magnetic anomaly amplitude for a 4.2-inch mortar in its most 
favorable and least favorable orientation is plotted as a function of depth. For a magnetic 
measurement such as this, the most favorable orientation is when the target is aligned with the 
Earth’s magnetic field and the least favorable is when the target is perpendicular to the field. 
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Figure 4-1. Predicted peak magnetic anomaly amplitude for a 4.2-inch mortar in its most favorable and 
least favorable orientations as a function of depth and measured values from a test pit adjacent to the 

GPO. Also shown are the system noise at the GPO and the detection threshold used for the 
magnetometer surveys. 

 
To confirm the accuracy of these predicted anomaly amplitudes, the survey team made a number of 
measurements over the mortars at various orientations in a test pit adjacent to the GPO. The peak 
anomaly amplitudes from these measurements (black diamonds) are plotted in Figure 4-1, 
confirming the predictions. Based on these data, the smallest signal possible from the target of 
interest at the maximum depth can be confidently predicted and the detection threshold set 
accordingly. After consultation with the Program Advisory Group, the threshold for all sensors was 
set at 50% of the smallest expected signal to provide a safety margin. The actual threshold used for 
the magnetometer surveys is shown in green in Figure 4-1. 
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The final step in this process is to use the data from the GPO to confirm the threshold chosen. 
These data are from a blind (to the survey crew) survey of the GPO. The data from Figure 4-1 with 
these GPO results included are shown in Figure 4-2. 
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Figure 4-2. The data from Figure 4-1 plotted with the measured data from a survey of the GPO. 

 
A similar process was used to set the threshold for the other survey sensors. The predicted signals 
for Gate 1 for the array of EM61-MK2, the most widely used geophysical sensor in munitions 
surveys, are shown in Figure 4-3. As before, the threshold is set at 50% of the smallest expected 
signal amplitude for the 4.2-inch mortar at a depth of 117 cm. For this sensor, the threshold is 
further from the system noise floor than was the case for the magnetometers sensors. Using the 
threshold plotted in Figure 4-3, there were 43 declarations in the GPO which correspond to 
detection of the 38 emplaced items (30 mortars and 8 half shells) and 5 false positives. The 
magnetometer survey resulted in 133 declarations in the GPO, substantially more false positives 
than the EM61-MK2 array. 
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Figure 4-3. Predicted peak of the EM61-MK2 array anomaly amplitude in Gate 1 for a 4.2-inch mortar in 

its most favorable and least favorable orientations as a function of depth and measured values from a test 
pit adjacent and the GPO. Also shown are the system noise at the GPO and the detection threshold used 

for the EM61-MK2 array surveys. 
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Setting the threshold based on the signal expected from the item of interest makes an important 
contribution to the classification problem. At many sites, the detection threshold has been set at 
some multiple of total system noise, irrespective of item of interest; often this multiple has been 1.5. 
Figure 4-4 shows the number of detections in the EM61-MK2 ARRAY data as a function of the 
detection threshold. Lowering the detection threshold from the 25 mV determined from Figure 4-3 
to 1.5 times the site noise would result in adding nearly 150% more locations to the target list. These 
additional targets are necessarily low signal-to-noise targets, which are often difficult to extract 
reliable features for and predominately end up in the “unable to analyze, must dig” category. 
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Figure 4-4. Number of automated anomaly detections as a function of detection threshold for EM61-MK2 

ARRAY data. Thresholds corresponding to the system noise, 1.5 times the system noise, and the 
threshold used in this demonstration are marked. 

 

4.2 MASTER ANOMALY LIST 

Using this method, all sensors detected all 149 seed targets. The area surveyed by BUD contained 
only 66 seed targets, all of which were detected. The number of anomalies included on the anomaly 
list for each of the survey sensors is listed in Table 4-1 along with the detection threshold 
determined for that sensor. These anomaly counts are far smaller than the number of anomalies 
listed on each sensor’s detection list. After these detection lists were received by Institute for 
Defense Analyses (IDA) personnel, the lists were combined, and only those anomalies separated 
from neighboring anomalies by at least 2 m were added to the master list to avoid overlapping 
signatures. Current approaches are not expected to perform effective classification when signatures 
of nearby anomalies overlap. 

Overlapping anomalies presented a particular issue for the magnetometer data in the SW area. This 
area exhibits moderate geological response, which results in a large number of near-threshold 
detections due to geology. In this area, first detections that were contained in clusters of overlapping 
signals were removed. Then, the magnetometer and GEM lists were further pared down to include 
only locations that corresponded to EM detections. 
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Table 4-1. Threshold used and number of anomalies selected by the survey sensors. 

Sensor 
Anomaly 
Detection 
Threshold 

Anomalies on 
Master List 

Total Anomalies on 
Detection List 

Seed Targets 
Detected 

Magnetometer Array 6 nT 969 7314 149 

EM61-MK2 Array 25 mV 870 1304 149 

EM61-MK2 Cart 19 mV, sum of 
three gates 633 951 149* 

GEM-3 Array 1.3 ppm, Qave 1039 3485 149 

BUD (SE 1 area only) See Ref. 6 244 362 66 

* In the original detection list provided by the contractor, one seeded item did not have a corresponding target selected. 
Upon further examination of the data, an anomaly that exceeds the target selection threshold is associated with this 
seed. This anomaly fell on the boundary of the grid that the contractor used to manage the data processing and was 
omitted from the original list in an accounting error. It was subsequently added to the master list for inclusion in the 
classification step.  

4.3 MAG AND FLAG DETECTIONS 
The Mag & Flag team surveyed a 100 foot × 100 foot area in SE1. The team marked 49 anomalies in 
this small area. For comparison, the magnetometer array declared 39 anomalies in this same area, of 
which 27 made it onto the master anomaly list (the rest were removed as part of clusters). Both 
groups correctly marked the 4 mortars seeded in this small area but, of course, the Mag & Flag 
detections do not allow for further processing so all 49 detections must be dug. Of the 27 
magnetometer array targets on the master anomaly list, 20 were correctly declared nonhazardous in 
the classification step so only 3 clutter items remained as false positives, and the remaining 4 were 
correctly classified seed targets. These results are summarized in Table 4-2. 

Table 4-2. Detection and classification results in the Mag & Flag area. 
 Magnetometer 

Array 
Mag & Flag  

Total Anomalies Declared 39 49 

Number on Master List 27 49 

Number of True Positives 4 4 

Number of False Positives after 
Classification 3 45 
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5 CLASSIFICATION RESULTS 
The data analysis occurred in three phases. In the preparatory phase, the demonstrators were given 
the appropriate survey data sets and the master anomaly list developed by the Program Office team. 
Each team then preprocessed the data as required, extracted a portion of the data corresponding to 
each of the anomalies to be classified, and submitted these data chips to their geophysical inversion 
routines to estimate target parameters. This led to the training phase of the data analysis 
demonstrations. The identities of approximately 200 of the anomaly sources were distributed to each 
demonstrator. These identities, along with the previously estimated target features, were used to 
train the demonstrators’ classification algorithms and determine classification boundaries. The final 
phase was the blind testing of each classification algorithm. For each data set for which they were 
responsible, each demonstrator prepared one or more prioritized anomaly lists. The anomalies were 
arranged from most confident that the item does not correspond to intact munitions to most 
confident that the item is an intact munition. 

5.1 FEATURE EXTRACTION 
To perform the feature-extraction step, the demonstrator must first select the data points associated 
with each anomaly. Those data are then submitted to feature extraction routines. For all the 
demonstrators in this program, these routines consist of a model-match to a physics-based model of 
target response. The features estimated by these procedures include target position, a rough estimate 
of target size, and an indication of goodness-of-fit from the magnetometer data and position, 
orientation, shape, and goodness-of-fit from the EM data. A histogram of the magnetometer-
derived “size” parameter estimated by one of the demonstrators is shown in Figure 5-1. Here size 
refers to the estimated physical size of the object, as opposed to the size of the anomaly footprint. 
 

Target "Size" from Mag Analysis

N
um

be
r

0

50

100

150

clutter
mortars

 
Figure 5-1. Histogram of estimated "size" extracted from the magnetometer array data for the 769 

anomalies successfully analyzed. While related to target size, this surrogate feature does not directly 
correspond to a physical dimension, so the units and values of the x-axis are suppressed. 

 
This demonstrator was able to extract reliable parameters for 769 of the 969 magnetometer 
anomalies on the master target list. Figure 5-1 shows that the distribution of “sizes” extracted from 
the clutter objects peaks at a value much smaller than the range of values observed for the 4.2-inch 
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mortar. This reflects the fact that the overwhelming majority of clutter items in the demonstration 
areas are smaller scrap and fragments. 
 
A similar presentation of a related feature is shown in Figure 5-2, which plots the distribution of an 
EM “size” feature estimated by another demonstrator. In this case, the “size” feature corresponds to 
the log of the sum of the three principal axes responses of the target, which is related to target size. 
Similar to the magnetometer results, the clutter sizes peak at a value that is much smaller than the 
mortars, which cluster tightly together.  
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Figure 5-2. Histogram of an EM size-based feature for the 870 anomalies successfully analyzed from the 
EM61-MK2 array data set. While related to target size, this surrogate feature does not directly correspond 

to a physical dimension, so the units and values of the x-axis are suppressed. 
 
Plots such as these can be made for each of the features extracted by each of the demonstrators. 
These estimated features have been compared in detail with the actual target characteristics by 
analysts at IDA, and these comparisons have been used to determine the relative effectiveness of 
each of the demonstrators’ parameter estimation routines. Details of this analysis can be found in 
the IDA report (Ref. 7). 

5.2 ALGORITHM TRAINING 
After reliable features have been extracted for each anomaly, the next step in the classification 
process is algorithm training. This can be as simple as setting a threshold for a classification method 
that relies on one target feature alone or as involved as training a statistical classifier on the 
distributions of multiple features associated with both munitions and clutter. All classification 
methods will perform better with some site-specific training data regardless of the complexity of the 
algorithms employed. 
 
The identities of approximately 200 targets were given to the demonstrators for training purposes. 
These training targets were roughly evenly distributed throughout the three survey areas and 
included some of the cued targets as well as some targets covered by the survey systems only. This 
method was chosen to approximate digging a small portion of the field for training purposes, as 
might be done on a real site, while avoiding biasing the training results due to sampling a too narrow 
slice of available anomalies. 
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An example of the results of this training is shown in Figure 5-3. The features plotted were 
estimated using the EM61-MK2 array data. Plotted on the x-axis is the scaled amplitude of the 
response from the largest axis of the target at the first time gate of the EM61-MK2. This feature is 
related to the physical size of the object. As expected, the 4.2-inch mortars, denoted by red plus 
signs, all appear on the right side of the plot, as they are larger than most items in the survey area. 
Plotted on the y-axis is the ratio of the response from gate three to that of gate one. This serves as 
an approximation of the decay rate, with larger values corresponding to slower decay of the induced 
signal. With a more capable instrument this could be measured more directly, but even this 
approximation of the decay rate has classification value. Again, all the mortars, red plus signs, are in 
the upper part of the distribution, meaning they have slower decay rate than most of the items in the 
field. 
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Figure 5-3. EM61-MK2 data used to train the classifier used by Sky Research for this demonstration. The 

identity of the source of each anomaly is denoted by the symbol used, and the lines represent the 
decision boundary in this two-feature space. The targets of interest are 4.2-inch mortars, and all other 

items are clutter. The features used by this classifier are discussed in the text.  
 
This plot illustrates well the classification possible at this site. The mortars cluster in one region of 
the plot. A number of the partial rounds plot in the region of the munitions, but most of the 
fragments and junk are well separated from the 4.2-inch mortars on this plot. It is also noteworthy 
that several of the common clutter objects, such as partials and base plates, form clusters of their 
own, lending confidence that the parameters estimated are physically meaningful. 
 
The line in Figure 5-3 shows the decision boundary developed using these data to train a statistical 
classifier. A measure of how munitions-like any particular target is can be estimated by its distance 
on this plot from the decision boundary and on which side it falls. By that measure, we can expect 
this classifier to perform well in the blind testing; the munitions are all contained in the “munitions” 
region of the plot, with the majority of the clutter outside that region and far from the boundary. 
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Similar plots were constructed by each demonstrator for each data set analyzed. These plots were 
used to tune the respective classifier parameters and decision boundaries. At the conclusion of this 
training phase, each demonstrator submitted a report to the Program Office describing its 
classification procedures and specifying the parameters and boundaries that would be used in the 
blind testing phase of the demonstration. After acceptance of these reports, each demonstrator 
proceeded to the blind test. 

5.3 BLIND TEST RESULTS 
In the blind test phase, each demonstrator submitted an anomaly list ranked from highest 
confidence not-munitions to highest confidence munitions for each data set analyzed, as shown in 
Table 3-2. The first item on the list, therefore, was the item that the demonstrator had the most 
confidence could be safely left in the ground. The individual anomaly lists were compared by IDA 
personnel to the ground-truth table developed by excavating each anomaly and carefully recording 
the result. (Ref. 7) 
 
The results in this section are presented as ROC curves, which plot the percent of correctly 
classified munitions versus the number of false positives (i.e., clutter items). These curves are 
generated by stepping through the prioritized anomaly list item by item. For each entry, the 
percentage of munitions correctly classified and number of false positives are tallied, and the 
cumulative results are plotted. Ideally, all the high-priority munitions calls will correspond to actual 
munitions, resulting in 100% correct classification of munitions with a minimum number of false 
positives. These curves are generated to illustrate the tradeoffs between increasing detections and 
increasing false positives: correctly classifying more of the munitions comes at the expense of 
including more false positives. At the point where 100% of the munitions are correctly classified, the 
ROC curve can illustrate that digging more does not result in removing more munitions. 

5.3.1 Magnetometer Data 
The results of the analysis of the magnetometer data performed by Sky Research are shown in 
Figure 5-4. The individual points plotted on the curve are colored to correspond to the classification 
ranking assigned by the demonstrator and the threshold specified by the demonstrator is marked by 
the arrow. Several conclusions about this sensor/analysis combination can be seen from the figure, 
the most important of which is that of the 727 anomalies analyzed, this demonstrator was able to 
correctly declare 509 to be not-munitions with high confidence. 
 
Working along the plot from left to right corresponds to looking at the anomaly list of Table 3-2 
from the bottom to the top. This demonstrator was not able to estimate reliable features for 97 of 
the anomalies analyzed. These are placed at the bottom of the anomaly list and are always going to 
be treated as though they are potentially munitions. These anomalies are the reason the curve does 
not start at the bottom left corner of the plot. Of these 97, 2 corresponded to munitions and the 
other 95 were clutter. Of the 183 anomalies classified as high-confidence munitions, 117 were, in 
fact, munitions and 66 were clutter. These points are colored red in Figure 5-4. These anomalies 
capture all but 1 of the munitions while only resulting in 66 false positives. The remaining munition 
is 1 of the 13 anomalies classified as “unable to decide – munitions like.” Including the anomalies 
classified as “unable to decide – clutter like” within the threshold of anomalies that must be treated 
as if they were munitions would only result in 22 more false positives.  
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Figure 5-4. ROC curve resulting from the analysis of magnetometer features by Sky Research. 

 
The sensor/analysis combination represented by Figure 5-4 should be judged very successful. More 
anomalies fell into the “unable to extract reliable features” category than would be optimum but, of 
the anomalies for which features were successfully estimated, the demonstrator was able to identify 
hazardous items with relatively high efficiency. The threshold was chosen appropriately. Only one 
mortar was classified as “can’t decide – munitions like,” and the number of items for which no 
decision was possible was small. 

5.3.2 EM61-MK2 Data 
The ROC curves for analysis of two of the EM61-MK2 data sets are shown Figure 5-5 This figure 
plots the results for analysis of EM61-MK2 data from both the cart and array using the UX-Analyze 
module of Oasis montaj. As can be seen from the figure, the results from the two platforms are 
virtually identical. In both cases, the analyst was unable to extract reliable features from just over 100 
anomalies. After that, it takes just about 100 false positives to capture all 119 of the munitions in the 
test data sets. As was the case for the magnetometer data presented above, both of these analyses 
were able to correctly classify over 400 anomalies as resulting from nonhazardous items. 
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Figure 5-5. ROC curves resulting from analysis of EM61-MK2 cart and array data using UX-Analyze. The 

cart data were analyzed by Parsons and the array data by SAIC. 
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It is important to note that the cart results shown in Figure 5-5 were obtained using a commercial 
sensor and analysis with a freely available module of Oasis montaj. The cart data were collected 
using tighter lane spacing than would be standard for a detection-only survey (0.5-m spacing in this 
case), but otherwise, normal commercial data collection and operator procedures were used. 
Analysis of the EM61-MK2 cart data by either the developer of UX-Analyze or the contractor yield 
equivalent results, showing the ease of use and power of this module. 
 
The threshold declared in conjunction with both analyses shown in Figure 5-5 was somewhat 
conservative; both anomaly lists included a significant number of anomalies corresponding to clutter 
after the last mortar was detected but before the threshold identifying high-confidence 
nonmunitions targets. 
 
An informative aspect of the analyses is to compare the classification performance obtained using 
the size-based feature extracted from the EM61-MK2 CART data that was discussed in the previous 
section with that obtained using all available features in the classification. This would be equivalent 
to only using the data along the x-axis in Figure 5-3 for classification and ignoring the other available 
information. The comparative performance of these two methods is plotted in Figure 5-6. Although 
both classifiers correctly classified all mortars as “high confidence munitions,” taking advantage of 
all available features allows the classifier to correctly recognize the mortars with fewer wasted false 
positives. This is seen in that the red filled circles rise much closer to vertical than the red line. 
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Figure 5-6. Comparison of the performance of a classifier based on size alone and with one based on all 

available features from the EM61-MK2 CART data. Analysis by Sky Research. 
 

5.3.3 Cued EM63 Data 
All three of the analyses presented so far have found that reliable features could not be extracted 
from a significant number of anomalies. In most cases, this is caused by insufficient signal-to-noise 
ratio to allow the geophysical inversion to converge. There are two primary sources of the noise that 
interferes with the analysis in surveys of this type, motion-induced sensor noise and apparent noise 
resulting from sensor location uncertainties. One way to lessen both of these noise sources is the use 
of cued investigations. Data can be collected in a small area around each anomaly on grid points or 
when moving slowly, lessening motion-induced noise and location uncertainty. 
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Figure 5-7 shows the results of a cued survey using the EM63 time-domain EM sensor. 
Unfortunately, this sensor/analysis combination also resulted in a significant fraction of anomalies 
for which reliable features could not be estimated. After these 32 anomalies classified as “unable to 
extract reliable features,” the next 29 anomalies on the dig list (classified as high confidence 
munition) were munitions. This is reflected in the vertical red line in Figure 5-7. The threshold from 
this analysis was too aggressive; the final munition was not identified in this analysis until just into 
the anomalies classified as “high confidence not-munitions,” but the top 68 anomalies on the 
prioritized list (more than half the total anomalies) were correctly classified as not hazardous. 
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Figure 5-7. ROC curve resulting from the analysis of EM63 cued data by Sky Research. 

 
Analysis of the inversion process for EM data for the anomalies classified as “unable to extract 
reliable features” often reveals that the data quality was insufficient to tightly constrain the depth 
estimated in the model-match procedure, and this unreliable depth estimate leads to unreliable 
estimates of response amplitudes. The data-quality requirements for an accurate depth estimate from 
magnetometer data are lower than for EM data, so one way to overcome this problem is to use the 
magnetometer-derived depth estimate to constrain the EM inversion. The results of classification 
using such a “cooperative” inversion for the EM63 cued data are shown in Figure 5-8. 
 
Constraining the item depth using the magnetometer data has two obvious results. First, the number 
of anomalies classified as “unable to extract reliable features” is halved, a big improvement. Equally 
important, the quality of the inversions that result is much better, allowing the analyst to more 
accurately define the high-confidence clutter-classification threshold. For the cooperative inversion, 
all but one mortar are classified as “high confidence munitions,” and no clutter is included in this 
category. The remaining mortar is the next item on the dig list; it was classified as “unable to decide-
munitions like” and therefore fell on the correct side of the munitions/clutter threshold. For this 
analysis, the only false positives are the 16 anomalies for which features were not able to be 
extracted reliably. 
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Figure 5-8. Comparison of the performance of a classifier using features extracted from the cued EM63 

data only and one using features from inversions in which the depth was constrained by the depth derived 
from analysis of the magnetometer data. Analysis by Sky Research. 

5.3.4 Advanced EM Sensor 
As a final example, Figure 5-9 shows the results of the BUD survey of the SE1 area. This sensor is 
the first of a new generation of EM sensors with substantially more information content in the 
signals. It is still in the development phase so it was deployed as a cued sensor and surveyed only 
one of the sub-areas. Figure 5-9 represents a near-perfect ROC. The first 56 anomalies moving up 
from the bottom of the list were, in fact, munitions. The analyst was slightly too conservative 
specifying the threshold; the next six items on the list were marked as munitions but were clutter. 
After this, the 203 anomalies at the top of the list (over 75% of the total anomalies) were correctly 
marked as high confidence not-munitions. 
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Figure 5-9. ROC curve resulting from the Berkeley UXO Discriminator survey of the SE1 area. Analysis by 

Lawrence Berkeley National Laboratory. 
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5.4 DETERMINATION OF THRESHOLD 
In hindsight, we can examine how well the demonstrators did at setting the threshold. This is a 
critical aspect of classification. The demonstrator-specified location of the threshold for most 
analyses was remarkably accurate.  
 
In many cases, the demonstrators were unnecessarily conservative in setting their threshold, 
including clutter items that could have been declared clutter. This is in line with the demonstration 
plan statement that the biggest failing is mislabeling a mortar as clutter. In a handful of cases, as 
illustrated by the cued EM63 analysis presented above, where one mortar is included in the high-
confidence clutter category, the demonstrator was slightly too aggressive. In those cases, the 
addition of more information allowed the demonstrators to sharpen, and more correctly position, 
their decision boundary. The most capable sensor demonstrated in this program, the BUD, had a 
very accurate decision boundary as seen in Figure 5-9. Details on the threshold accuracy for all 
sensor/analysis combinations can be found in the IDA report. (Ref. 7) 
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6 DATA REQUIREMENTS 
 
Classification requires data of higher quality and density than are typically collected for the detection 
of munitions. The primary concerns are with the data density, the geolocation precision of each data 
point, and the SNR. Numerous studies have shown that these factors can seriously degrade the 
ability to use model-based analysis to accurately extract target parameters. (Ref. 13) In this section, 
we will concentrate on the data requirements for the two commonly used commercial survey 
sensors, the magnetometer and the EM-61. 
 
In this study, the data-collection specifications were designed to support classification analyses. The 
array data, for example, were collected with systems designed to collect research-quality data 
operated by highly trained scientists. Data of sufficient quality could be collected using other 
contractor-built arrays operated by field personnel, if the data specifications and quality checks were 
adequate, as demonstrated by the EM61-MK2 CART results.  

6.1 DENSITY 
For model-based inversion of geophysical data to be successful, a sufficient number of data points 
must be collected to accurately represent the magnetic field or EM response of the target object. In 
the case of magnetometer data, which is fit to a simpler model with fewer parameters, the data 
density required is not as high as it is for EM data. The EM signal is fit to a more complicated model 
with more parameters, and more data points are required to obtain a fit that converges and provides 
a physically reasonable answer. Figure 6-1 illustrates this effect with EM61-MK2 data. 
 

 
Figure 6-1. Results of fitting EM61-MK2 data that is adequately sampled (left) and that is undersampled 
(right). Axes’ units are in meters. Although the fit quality (coherence) appears better in the undersampled 
case, the derived parameters are not sensible. The target is a mortar, which is a cylindrically symmetric 
object. In the analysis on the left, β2 and β3 are nearly equal, as they should be, whereas in the analysis 

on the right, they differ considerably. 
 
Geophysical data are commonly acquired by running a sensor in closely spaced lines, similar to the 
pattern of a lawnmower cutting grass. Sensors can be ganged in an array to collect more lines of data 
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for each physical pass over the site. In either case, data density is determined by the spacing between 
adjacent lines, termed lane spacing, and the combination of down-track speed and sampling rate 
(how frequently a data point is recorded), termed along-track. The cross-track lane spacing almost 
always exceeds the spacing between points in the down-track direction. 
 
The MAG data were collected with an array system. Eight magnetometers are spaced 25 cm apart to 
cover a 2-m swath width on each pass. Adjacent passes are overlapped slightly so that no line 
spacing exceeds 25 cm. The sampling rate is 50 Hz, which, combined with a typical down-track 
speed of 3 m per second, results in a measurement in the down-track direction approximately every 
0.06 m. 
 
The EM ARRAY data were taken with an array of three overlapping 1 m2 EM61-MK2 MK2 sensors 
that cover a 2-m swath. The three EM sensors are configured so that the data line spacing is 0.5 m. 
The sampling rate is 10 Hz, which, combined with a typical down-track speed of 1.5 m per second, 
results in a measurement in the down-track direction approximately every 0.15 m. Because the EM 
fit requires higher data density and benefits from a diversity of measurements from different 
orientations relative to the target, the field was surveyed twice in orthogonal directions.  
 
The EM CART data were collected with a typical industry-standard 0.5 × 1 m EM61-MK2 coil. The 
ongoing production survey work at Camp Sibert to support detection specifies 1-m lane spacing. 
For the pilot project, this was reduced to 0.5 m in the cross-track direction. The measurements in 
the down track direction were taken approximately every 0.06 m.  

6.2 GEOLOCATION PRECISION 
Another key element to obtaining a good fit of data to a model is that the locations at which the data 
points are recorded are well measured. It is important that all the points to be incorporated in the 
analysis of each target be well located relative to one another, that is, that they have high precision. 
The absolute accuracy of the point locations in a global coordinate system is less important. For 
MAG fits, relative errors on the order of about 10 cm or less are tolerable. For EM fits, tolerable 
errors are smaller, ideally 1-2 cm, but necessarily 5 cm or less. Figure 6-2 illustrates the degrading 
effect that increasing location error imposes on the parameter value estimates from EM modeling. 
Needed precision can be achieved under good conditions with DGPS.  
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Figure 6-2. EM polarizability errors as a function of position error. 
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In addition to the absolute location of a GPS antenna (or other positioning measurement device), it 
is advantageous to measure the orientation of the platform. This allows for correction of any sway in 
the GPS antenna. If the antenna is mounted on a long pole, as shown in Figure 6-3, this effect can 
introduce errors of tens of centimeters in the apparent sensor position, which would be detrimental 
to the model fitting. 
 

 
Figure 6-3. Error introduced by uncorrected tilt of GPS antenna. 

 
For EM61-MK2 and GEM-3 array systems, geolocation was done in the same way. The platform 
contains three GPS receivers and an IMU. The data from the three GPS sensors give an accurate 
location in three dimensions, which can be combined to provide some information about the 
platform orientation. However, the GPS sample rate is too slow to capture all platform motions, so 
an IMU with a much faster sample rate is used to supplement the orientation information. (Ref. 11) 
The magnetometer array position is determined by a single GPS antenna. 
 
The cart data were positioned with a centimeter-level GPS system as it is typically used by the 
contractor. A single antenna was mounted on a pole over the center of the coil. No orientation 
information was captured.  

6.3 SIGNAL-TO-NOISE RATIO 
There are other data-quality considerations related to the SNR that are important for obtaining data 
that are useful for model fitting. Only data with sufficient SNR can be successfully modeled. 
Estimated minimum SNR for a successful model fit varies from about 4 to 10. Both the system 
noise and the SNR for a calibration target should be specified and regularly checked. The actual 
values that will be appropriate will depend on the site conditions and the munitions of interest. 
Potential problems and their effects are briefly summarized below, along with considerations for 
mitigating problems. 
 
Signal: To extract physically meaningful parameters, it is essential to ensure that the sensor 
measurements are accurate and repeatable. If the signal measured for the same target varies from 
hour to hour or day to day, it is not possible to use the extracted parameters to make a classification 
decision. In this program, the response of the sensors to calibration targets was measured for 
consistency at the start and finish of each data-collection day to provide a quantitative measure that 
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the sensor was working properly. To mitigate the tendency to be more careful collecting data for 
calibration than during typical field operations, the signal strength for blind seed targets can also be 
checked for reasonability. The measured values should fall within the predictions discussed in 
Chapter 4. 
 
Noise: There are numerous sources of noise that would result in data that is not analyzable. These 
include noise from the platform, vehicle, operator, and external magnetic sources, as well as from 
poor sensor condition. Noisy data can either result in a fit that will not converge or in parameters 
that are contaminated with extraneous contributions to the signal that is being modeled. A site-
specific noise specification should be developed and checked regularly. A target-free area can be 
used to determine normal background noise conditions. This may, of course, vary across the site. 
Each day’s data should be examined to verify that the measured noise is as expected or to document 
differences across the site so that they may be incorporated into the analysis and decision-making 
processes. 

6.4 DATA ACQUISITION OBSERVATIONS AT SIBERT 
Despite strict data specifications and careful field work, problems were encountered with the data 
collected during this demonstration. Here we discuss those issues that affected data quality and make 
some observations about platform selection in general. Fortunately, none of these problems was 
serious enough to compromise the classification study as a whole, but effects were observed in 
reduced performance on some data sets and in failures to correctly classify specific targets that were 
affected.  
 
Furrows: Part of the demonstration site had been recently plowed, leaving furrows in the east-west 
direction. As the data-collection platforms moved over these furrows, a regular pattern of motion-
induced noise was introduced. This was particularly a problem for the EM61-MK2 ARRAY. An 
example of the data is shown in Figure 6-4. The data collected in north-south passes shows regular 
motion-induced noise, but that collected in the east-west direction does not.  
 

 
Figure 6-4. Platform motion noise in the EM ARRAY data. The left panel shows the combined north-south 
and east-west surveys, the center panel shows the east-west survey alone, and the right panel the north-

south survey alone. Furrows from recent plowing introduced regular noise features in one direction.  
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GPS drop outs: GPS systems occasionally experience drop outs. During the quality-control (QC) 
process, the GPS data are examined for fix quality and the data are plotted for visual inspection of x 
and y. However, there was one small section of data collected where the z location value was not 
accurate. Since the model fitting is a three-dimensional operation, the incorrect z resulted in 
nonsensical fits for a handful of targets using this data set. This was discovered during the failure 
analysis conducted after the classification results had been scored. 
 
Lane following: Gaps in data coverage can result in too few data points to accurately characterize a 
target. Such gaps are often the result of small errors in following the planned lane pattern. Long 
lanes can be difficult to follow exactly from visual cues, such as cones marking the ends, alone. This 
was a problem in a few places with the cart data. Real-time GPS-driven navigation systems were 
used to guide the array survey systems. These navigation systems import the planned lanes and 
report the position and any error to the operator so that track corrections can be made in real time 
and planned lines closely followed. 
 
Array versus single sensor: Where it is applicable, there are a number of advantages to using an 
array. In addition to the increased production rate from collecting a wider swath of data in a single 
pass, the array setup provides data that are better suited to feature extraction. Primarily, this is 
because within a swath width the data are well located in a relative sense. For the magnetometer 
array, for example, the eight magnetometers are rigidly spaced and all the sensors on the platform 
move together. Even if the platform is slightly mislocated, the locations of the sensor measurements 
relative to one another are well known. In addition, the array decreases coverage mistakes from a 
narrow-swath sensor following lines of approximately the same spacing as its width. Finally, the 
greater weight and power that can be borne by a towed platform allow for more complex 
geolocation systems and navigation aids than might be practical in a man-portable configuration.  
 
For EM systems, the collection of array data needs to be carefully planned. The ability to extract 
parameters from EM data depends on sampling the signal from multiple orientations of the sensor 
relative to the target. When EM sensors are arrayed and the transmitters are fired simultaneously, 
this spatial diversity in the illumination of the target is reduced. This was compensated for by 
collecting data in two passes run in orthogonal north-south and east-west directions. Since the 
transmitter is moved between each data point in a single-coil system, this is not an issue for the cart 
system. 
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7 COST CONSIDERATIONS 
 
It is premature to attempt a quantitative cost assessment based on the Sibert study alone. The 
demonstration nature of the project required extensive planning that resulted in a very conservative 
data-collection plan and the collection of redundant data. Most data collection was performed by 
researchers and other senior personnel. In addition, the site was relatively small, so true production 
costs were not realized even for the more routine data-collection platforms. For the most part, the 
processing was performed by the developers of the software in their first real-world demonstration, 
so there was a significant learning curve involved. In short, the costs of the demonstration do not 
reflect what could be accomplished using a survey crew and experienced geophysicists from a 
competent contractor to collect and process the required data. This is achievable and production 
costs will likely be substantially lower than those in the demonstration. 

7.1 COST MODEL 
 
The cost associated with characterizing and remediating a munitions response site is driven by many 
factors. In current site-characterization operations that use digital geophysics, all items that are 
detected by a sensor above a target selection threshold are dug. Many of the excavated items above 
these thresholds are not munitions and include non-munitions-related man-made items, natural 
geology, or nonhazardous munitions-related scrap.  
 
Currently, trained explosive safety personnel must be utilized for each dig at a munitions response 
site. On some sites, explosive safety exclusion zones require the use of barricades or evacuations or 
prevent the simultaneous deployment of multiple dig crews. In the case of chemical munitions sites, 
elaborate safety and monitoring equipment must be used. Until classification has been demonstrated 
successfully on a substantial number of sites to build confidence, it is possible that leaving items 
completely unexcavated may not be accepted by stakeholders. In this case, if all detected items are to 
be dug, site managers could utilize classification techniques and employ less expensive procedures, 
under the supervision of a UXO supervisor, to dig all the items that were identified as not 
hazardous. 
 
Two key site-management decisions drive classification costs: the threshold for anomaly selection 
and the use of classification to decide how to treat each anomaly. Objective-driven detection, 
coupled with classification approaches to identify with high confidence items that are not munitions, 
has the potential to dramatically reduce the overall costs of a remediation project. We have 
developed a notional cost model to show how the tradeoffs will occur. 
 
The cost model considers three main elements: 

• Data collection costs, since data required for classification may cost more to collect, 
• Additional processing costs, and 
• Savings from digging fewer holes or not having to use full-up safety measures.  

 
The model is intended to apply to survey data acquired using commercial instruments that could be 
contracted today. Cued data and research instruments may have substantially different cost 
structures and are not considered explicitly.  
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7.1.1 Cost Savings From Anomaly Selection Threshold 
 
Traditional methods to select the target-detection threshold have not been rigorously tied to the 
munitions of interest. One common method has been to tie the threshold to the noise floor seen in 
the GPO, often setting it at a multiple of 1.5 times the measured noise. This has the effect of 
introducing a large number of anomalies arising from noise and small clutter into the target lists, 
despite the fact that their signal strengths are not consistent with the targets of interest. 
 
This study used as the threshold the signal strength calculated for the 4.2-inch mortar at the deepest 
depth and the least favorable orientation, divided by two as a safety margin. Figure 7-1 shows for 
one of the EM61-MK2 data sets the number of anomalies that would appear on the detection list 
for a threshold set:  

• At the noise floor (3195), 
• At 1.5 times the noise floor (2541), and 
• Using the predicted munitions signal strength (997).  
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Figure 7-1. Anomaly detection threshold used in this study compared to traditional methods. Note that 
∼1500 additional anomalies are selected at a threshold 1.5 times the noise compared to the method used 

in the pilot study. 
 
This method detected all the seeded munitions and significantly reduced the number of items 
requiring further action. In the common method of setting the threshold to 1.5 times the noise, all 
these additional items would require excavation. In this method, it is recognized that these signal 
cannot be the result of the target of interest and they are neither excavated nor further analyzed in 
the classification processing. This is significant because the majority of these items would have likely 
have had insufficient signal to be analyzed and therefore been placed on the “can’t analyze” list and 
excavated. In addition, the cost savings from this step alone would be 1544 times the cost to dig 
each hole. 
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7.1.2 Cost Savings from Classification 
In addition to selecting an appropriate detection threshold, determining which of the detected 
anomalies can be treated as high-confidence clutter and which must be treated as potential 
munitions is an important cost driver. The classification approaches applied to this site were used to 
produce hypothetical examples of how the cost trade-offs would work if classification were 
implemented at an operational site. No attempt is made to make a quantitative cost estimate, but 
general trends and break points are noted.  
 
In this study, all detected anomalies were sorted in a list from highest confidence that the item is 
clutter to highest confidence that the item is a munition. Classification technology demonstrators 
had to identify the breakpoint on the dig list beyond which all items could not be determined to be 
clutter with high confidence and must therefore be treated as potential munitions. All items that 
could not be analyzed with the classification approaches were automatically placed on the list that 
must be treated as munitions.  
 
The lower panel in Figure 7-2 shows how notional costs accumulate through the process of data 
collection and processing, digging the munitions, and digging the clutter. The examples presented in 
Figure 7-2 compare costs based on three scenarios: 

• Status Quo Detection Only: This model specifies a lower density data collection for 
detection only and all anomalies are excavated using intrusive recovery procedures that 
require trained UXO qualified personnel and safety equipment.  

• Classification 1: This model specifies higher density and higher quality data collection 
followed by classification processing, and all high-confidence clutter items are left 
unexcavated.  

• Classification 2: This model also specifies higher density and higher quality data collection 
followed by classification processing, but a less expensive alternative to the current 
operational methods of intrusive recovery is used on the anomalies determined to be clutter 
with high confidence.  

 
The classification examples are tied to the different regions of the ROC curve shown in the upper 
panel. For a detailed explanation of the ROC curves, see Section 2. 
 
There are several important points to note in interpreting this plot:  
 

• The cumulative cost curves start out on the y-axis at different points. This reflects that the 
initial costs of higher density data collection and processing for classification are higher than 
the standard methods. The costs of digging the munitions, which must be borne in all cases, 
are included here. 

•  The “detection only” curve has a constant slope and ends at the total number of anomalies. 
All detected anomalies are dug using the same procedures at the same costs. 

• For both classification examples, all the items determined to be high-confidence munitions 
or “can’t decide” must be dug as though they are munitions. Thus, the two classification 
examples rise at a slope equal to the detection slope until the threshold is reached on the 
ROC curve where clutter is identified with high confidence (i.e., the yellow-green transition).  
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• In the region where there is high confidence that the remaining anomalies are clutter (green 
portion of the ROC curve) and it is decided not to dig these anomalies at all, no additional 
costs are incurred. 

• In the region where there is high confidence that the remaining anomalies are clutter and it is 
decided to dig these anomalies, but using alternative dig procedures, additional costs are 
incurred, but the cost of each of these digs is lower so the slope is more gradual. 

• The break point in cost saving will be determined by the true dollars associated with the data 
collection, processing, and digging, which will be site specific. 
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Figure 7-2. Notional cost model illustrating the potential savings  
using the classification methods outlined in this report. 

7.2 COST DRIVERS 
 
Many factors will affect the actual real-world values for our three main cost elements. The 
breakpoint in cost savings will be determined by the true dollars associated with these elements. 
Here we discuss the important factors that will influence these values. 
 
Data collection: The costs for a production application of these technologies are dependent upon 
site conditions such as topography, vegetation, geologic background, and known munition types. 
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These factors will determine the types of sensors that may be used, the platforms that will be 
appropriate, and the care with which they must be operated. 
 
In the study at Camp Sibert, the array systems surveyed 100% of the study area, which is amenable 
to low-cost, high-quality data collection. In the case of the magnetometer array, the magnetometers 
are fixed at a spacing of 0.25 m, which is adequate for classification. Presumably, the costs would be 
the same for a detection or a classification survey. The EM61-MK2 array, with 0.5-m lane spacing, 
surveyed the study area in two perpendicular directions. If orthogonal surveys such as this are 
needed, data-collection costs will be commensurately higher. The EM61-MK2 cart system surveyed 
the site with 0.5 m lane spacing for classification, where the specification for the production work 
on the rest of the site to support detection is 1 m.  
 
Processing: Processing costs may be affected by the presence of complex geology, which can make 
filtering and parameter estimation more complicated. On the Sibert site, the introduction of motion 
noise in the EM61-MK2 data stream was a factor in the complexity of the data analysis.  
The munitions of interest will likely have a great effect on complexity and costs of processing. Here, 
size was a good indicator, but that will not be the case everywhere. The number of nonmunitions 
that can be removed with high confidence at another site may be lower. In addition, the job of the 
processor in determining the important features and training the classifier may be harder. Finally, in 
operational classification applications, excavation costs will be driven by how conservatively the 
stop-dig point is placed on the ranked dig list. 
 
Cost of digging a hole: The costs associated with excavating anomalies vary widely. At Sibert, 
where there are homes adjacent to the site, safety devices known as open front barricades are 
required for many digs, and this drives the cost to an average of $192 per hole using the prescribed 
procedures. At the adjacent chemical site, with same types of 4.2-inch mortars, the safety procedures 
are far more elaborate and the costs per hole are substantially higher. Many sites report much lower 
costs per hole. When minimal engineering controls are used, costs as low as $45–$90 per hole have 
been reported. This will be especially true if the costs are dominated by digging small, near-surface 
junk. These digs would be eliminated at the detection stage based on the threshold used in the Sibert 
study model. Cost estimates for such sites would need to account for not only the reduced number 
of digs, but also the differences in the types of targets that would actually be dug and their average 
cost per target versus current practices. In general, large, deep targets cost more to dig.  
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8 PROGRAM CONCLUSIONS 

8.1 OVERALL 
The pilot program demonstrated successful classification on this simple site. With carefully collected 
survey data from either magnetometers or EM sensors and transitioning physics-based analysis 
techniques, well over half the detected clutter items were routinely eliminated with high confidence. 
Some of the demonstrated processing approaches on these data sets were able to eliminate up to 
75% of the clutter. When advanced emerging EM sensors were used, nearly perfect results were 
achieved. 
 
With regard to detection, the pilot program demonstrated an approach that ties the target-selection 
criteria to the expected signal strength of the target of interest rather than the site noise. For the 
common survey sensors, the target signal is readily estimated and confirmed with measurements in a 
test pit or GPO, and is site invariant. This approach alone substantially reduced the number of 
signals that were selected as potential targets of interest. For example, in the EM61-MK2 Array data, 
establishing the target selection threshold using the predicted signal strength with a factor of 2 safety 
margin reduced the number of targets selected to less than 1000, compared with more than 2500 
using 1.5 times the site noise. 

8.2 ABILITY TO CORRECTLY DETERMINE PARAMETERS 
A critical factor in this process is deriving physically meaningful parameters. In this study, the 
munitions were most commonly identified by parameters related to their size, which was large in 
relation to the predominant clutter on the site. Other parameters that were important were decay 
constants related to the wall thickness and material properties of the objects.  
 
Meaningful and consistent parameters were derived not only for the munitions items, but for 
common classes of clutter items as well. An example is seen in Figure 5-3. Here, the munitions form 
a cluster and the common clutter items, including base plates, nose cones, and half rounds, do so as 
well. This adds confidence that the underlying concept of deriving physically meaningful parameters 
to identify classes of items with high confidence is valid. 

8.3 UNDERSTANDING FAILURES 
Failures in the attempt to use physics-based analysis to make a decision about whether a signal 
corresponds to a target of interest can come in two ways. We have termed these can’t analyze and can’t 
decide. 
 
Can’t Analyze: Equally important to determining meaningful parameters is the ability to determine 
when derived parameters are not meaningful and should not be used for classification decisions. 
Low SNR, poor data quality from any cause, or an inadequate physical model can cause a poor fit. 
This is evident in a fit quality measure. Most demonstrators were able to analyze 70%–80% of the 
anomalies. All items for which good fits cannot be obtained need to be treated as unknowns and 
dealt with as though they were in fact dangerous munitions.  
 
Many of the failed fits corresponded to soil, hot rock, or no contact. It is not expected that a model 
of a compact metallic object will necessarily fit well to such signals. For example, one analysis turned 
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out 196 can’t analyze targets. Of these, 98 were not metallic objects. Although largely benign, parts of 
the Camp Sibert site exhibited moderate geological interference. At another location, the number of 
can’t analyze targets attributable to geology may be higher or lower. 
 
The two main causes of can’t analyze targets are that the data do not adequately capture the target 
signal or that the model is physically incomplete. Unless better data can be obtained or a different 
model that better describes the physics is employed, there is no possibility of improving 
performance on targets for which meaningful parameters cannot be estimated.  
 
Can’t Decide: The other condition where the analysis model demonstrated that it would be unable 
to make a classification decision is when meaningful parameters are obtained (i.e., the fit converges), 
but the parameters do not fall neatly into well defined categories that will permit classification. That 
is, the munitions and the clutter “look” similar to the sensor. 
 
In this case, it is possible that additional training data can improve the ability to make a 
determination. As items are excavated, their identities can be incorporated into the classifier to 
improve the statistical characterization of the objects on the site and their properties. If this 
additional training data sufficiently improves the separability of different classes of items, it is 
possible that the can’t decide items can ultimately be classified. In general, the demonstrators also did a 
good job of setting their thresholds to correctly account for the items where they could not make a 
high confidence classification decision. 

8.4 SITE–SPECIFIC FACTORS AFFECTING PERFORMANCE 
 
The conclusions about classification performance on this site must be interpreted in light of the site 
conditions. It is not expected that the performance observed here will be transferable to other sites 
with much more difficult conditions. Additional demonstrations are planned to document 
performance under more challenging conditions. 
 
Several factors at Camp Sibert favored success. These include: 

• Single munitions type: On a more complex site, with a mix of munitions types, classification 
will be more complicated. The combined parameter spaces that define multiple munitions 
types will likely overlap with more of the clutter items. 

• Large target of interest: Large targets provide several advantages. First, the large targets tend 
to have strong signals, which yield ideal data for doing good quality parameter estimation. 
Second, a large item of interest among smaller clutter items makes size an important 
parameter, and size is well determined by the parameter-estimation methods used. Third, the 
classification problem is simplified if there is good separation in a single parameter. 

• Isolated munitions: It is difficult, if not impossible, to obtain meaningful parameter 
estimation results on items with overlapping geophysical signatures. That is currently a 
subject of research. The models used in the pilot program assume that items can be fit to a 
dipole associated with a single object. If adjacent signals contribute to the observed signal, 
the parameters that are derived will be contaminated. We deliberately avoided areas where 
densities were high and many signals would overlap. In addition, we eliminated from the 
study any isolated groups of items, which cannot currently be treated and must all be 
regarded as not analyzable. 
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• Site conducive to taking “good” data: This site was relatively flat, had good sky view for 
high-quality GPS, exhibited little geologic interference, and was generally conducive to 
collecting data of a quality that supported parameter estimation with physics-based models.  
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9 CLASSIFICATION IMPLEMENTATION 
Realizing the potential advantages of classification requires formulating a model for its application 
that will be accepted by all stakeholders. The study described in this report relied on a retrospective 
analysis of the demonstrators’ performance. All anomalies on the various dig lists were excavated 
and compared to the rankings from each demonstrator to determine performance. This is possible 
only in a demonstration project, with perfect knowledge after the fact, but is not a good model for 
an actual use of these techniques, as avoiding some digs is the major benefit of successful 
classification. In this section we consider how classification might be implemented in the absence of 
complete and perfect knowledge. 

9.1 PRACTICAL MODEL FOR THE CLASSIFICATION PROCESS 
 
Classification on a production site would need to proceed in a prospective rather than retrospective 
model. Truth information that would allow one to determine whether each individual item was 
correctly classified as munitions or clutter will not be available if the clutter is not dug up. At the 
conclusion of the initial analysis and training period on a site, the site team will have the results of 
the analysis of the training data, a prioritized dig sheet based on that training, and a recommended 
threshold based on a combination of accumulated experience and site-specific factors. The challenge 
for the site team will be how to proceed with the dig program, and specifically, how to decide when 
to stop digging (or when to relax the safety requirements as the targets being dug are no longer 
hazardous). 
 
One obvious possibility is to accept the analyst’s threshold and stop digging at the threshold. For a 
number of the analyses discussed in this report, that would have been a successful strategy, although 
not all demonstrators drew their threshold to capture all munitions and this was only known after 
the fact. If the dig results make sense, that is, if there are lots of munitions dug when the items with 
high probability of munitions are dug, and none appear when the threshold is approached, this will 
increase the stakeholders’ confidence in the threshold chosen. 
 
There are a number of actions that could be taken to increase confidence in the validity of the 
suggested threshold. One, or more, of these validation methods will likely be used on all sites. 

• Seeding the site can increase confidence in the classification process if all the seeded items 
are found and correctly classified. This does not, however, guard against the presence of 
unexpected classes of hazardous items. 

• Complete remediation of a small number of grids to test the performance of the 
classifier/threshold combination is another possibility. This would presumably be an 
extension of how the training data would have been acquired; all anomalies are dug in a 
representative sample of grids. The remainder of the site can be dug using the threshold 
validated in this “blind test.” As long as the grids chosen for training and testing are 
representative of the entire site, this validation should give stakeholders confidence in the 
classification process. 

• Investigating a sample of items on the do-not-dig list can also be used to validate the 
classification results. It does not make sense to randomly select items classified as 
nonhazardous for digging as the likelihood of finding one of the few missed munitions 
among the overwhelming number of clutter items is small. It might well make sense to 
sample items based on their location in parameter space. In Figure 9-1, a plot is made with 
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the estimated value of feature 1 on the x-axis and the estimated value of feature 2 on the y-
axis. Each anomaly analyzed is represented by a point on this plot corresponding to the 
feature values estimated for that anomaly. The two green clusters were expected classes of 
munitions. The red cluster represents a group of like items that was not expected. It would 
be prudent to sample the anomalies that make up the red cluster. If, in fact, they were 
correctly classified as nonhazardous, this will increase the site team’s confidence in the 
process. If, on the other hand, they turn out to be munitions not represented in the training 
set, then the conceptual site model must be revised and a new munitions type added to the 
objectives. 

 

 
Figure 9-1. Cartoon of a two-feature classification in which two expected clusters of anomaly features are 

observed, along with one unexpected cluster. 
 
In addition, it must be recognized that the classification process is not static. Each dig provides 
additional ground truth that can be used to augment the initial training data. It is likely that the 
classifier will be retrained on a regular basis (nightly if there are several dig teams active or, perhaps, 
weekly). Over time, this additional ground-truth information will sharpen up the parameter 
distributions for each item of interest and likely lead to adjusted thresholds. Unfortunately, this 
additional training data will be preferentially obtained from anomalies classified as resulting from 
munitions items, which are the best defined initially and therefore the least useful as additional 
training items. This additional training can, of course, only help with classification of items for which 
reliable features could be extracted; it can do nothing for anomalies that could not be successfully 
analyzed. 

9.2 APPLICATIONS OF CLASSIFICATION TO THE MUNITIONS RESPONSE PROCESS 
The classification process as discussed above has obvious applications in two stages of the 
munitions response process. One of the goals of the investigation stage is to ensure that the 
historical records regarding munitions use at the site are correct and complete and to gain some 
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information about the distribution of contamination across the site. At present, this is accomplished 
by prioritizing the anomaly list by size or amplitude combined with selective digging. If quality data 
are collected, even a two-feature classification as illustrated in Figure 9-1 could be used to guide the 
dig program more efficiently. 
 
In this example, a number of anomalies are scattered throughout the plot and three clusters of 
anomalies are observed. Two of these clusters, circled in green in the figure, correspond to feature 
values expected from the two items of interest known from the historical documents. The third 
cluster, circled in red, was not expected and could correspond to a previously undocumented item of 
interest or a class of nonhazardous item such as fins. Digging a representative sample of this third 
cluster will easily distinguish these two possibilities. 
 
The second application of classification techniques is, of course, during a remedial action. As 
discussed in the earlier chapter, successful classification can lead to more appropriate use of 
expensive safety measures or, in some cases, the decision to leave items in the ground. 

9.3 FACTORS AFFECTING ACCEPTANCE OF CLASSIFICATION 

9.3.1 Transparency of the Classification Process 
The model for classification outlined in this report represents a transparent process involving 
explicit, documented classification that should aid acceptance by stakeholders. It should be realized 
that current survey practices all involve classification, if only implicitly. A mag & flag or EM & flag 
survey involves operator judgment as to the threshold to declare a detection; this process is neither 
documented nor reproducible. Even a digital geophysical survey typically involves an analyst 
examining the geophysical data and making some determination of what to include on the anomaly 
list; this is often not documented but can be reexamined. 
 
The process that has been outlined here is documented at each step, is reproducible, and can be re-
done if site objectives change. The pre-processing steps applied to the raw geophysical data are 
documented, the anomaly selection threshold is based on the target(s) of interest at the site, and the 
classification algorithms and thresholds for dig list ranking are documented. As stakeholders become 
familiar with this process, their confidence in the results and willingness to sanction its use at their 
sites should increase. 

9.3.2 Quality Assurance/Quality Control Approach 
Implementation of a classification protocol as demonstrated in this study will require significant 
changes to current QA/QC procedures. Current quality concepts will need to be adapted to account 
for a different expected end state. Many things that are currently considered a QA/QC failure for a 
detection survey, such as detection of an anomaly using an analog instrument or observation of a 
significant piece of ferrous metal, are not failures when considered in the classification process. A 
different QC procedure will have to be devised for the two parts of the process, the detection phase 
and the classification phase. 
 
QA/QC on the detection phase of this model will require the use of digital instruments, since 
detection thresholds are set by expected signal amplitude from the target of interest and low-level 
anomalies will be present at the end of the procedure. This could be accomplished by surveying 
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small portions of the site with an instrument comparable to that originally used for the detection 
phase. The use of seed targets in the site can also provide valuable detection verification. 
 
QA/QC criteria need to be developed for the classification phase of this model. If all anomalies 
above the threshold are removed and classification is used only in selecting the level of safety 
procedures required, then the information is available for detailed QC of the classification results. If, 
on the other hand, anomalies classified as nonhazardous are left in the ground, large metal objects 
may be legitimately remain in the field. Procedures for QC/QA will likely include: 

• Seeding the area with inerts, which can be used not only to verify the ultimate decision for 
each seed target, but also as a check on the parameter-extraction process for convergence 
and meaningful parameter estimation, and 

• Selective, guided digging of targets classified as nonhazardous as discussed in Section 9.2. 

9.3.3 Management of Residual Risk 
Implementation of these techniques should not, in itself, change the way that residual risk is 
managed at munitions sites. Fully implementing the power of classification, that is, leaving items 
classified as “not munitions” in the ground, introduces a small risk that a munition may have been 
incorrectly classified and remains on the site. This is no different than the small probability that a 
munition may not have been detected using current techniques and therefore remains on the site. In 
both cases, stakeholders must realize that there is no way to reach 100% certainty that a site is 
munitions free. Residual risks must be appropriately managed in both cases.  
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10 FREQUENTLY ASKED QUESTIONS ABOUT 
CLASSIFICATION 

 
What is classification? 
Classification is a process that differentiates munitions from nonhazardous buried items by applying 
mature physics-based analysis methods to sensor data. Nonhazardous items could include 
munitions-related scrap, geology, and cultural clutter. The analysis methods are used to estimate 
parameters of buried objects, such as size, aspect ratio, remanent magnetism, and electromagnetic 
decay rates, that can be useful in distinguishing munitions from other sources. Advanced 
classification algorithms then use this information to determine whether a signal is likely to arise 
from a munitions item or another source.  
 
The results from the classification algorithms are used to develop a dig list ranked from highest 
confidence the items are nonhazardous to highest confidence the items are munitions. A point on 
the dig list, termed the threshold, is selected to separate items that need not be treated as potential 
munitions.  
 
What about other anomaly prioritization methods? 
The approach demonstrated in the pilot program represents a physics-based, principled, transparent, 
process consisting of component methods that are well understood and have undergone several 
years of development and review by DoD and other interested parties. Alternative anomaly-
prioritization methods have been attempted. ESTCP does not have a detailed understanding of 
these methods, and many differ considerably in approach. Only those methods referenced here were 
demonstrated as part of the pilot program. The same steps could be implemented by other analysts 
with the same result. The successes seen in the pilot program should not be expected to transfer to 
alternative and undemonstrated methods.  
 
How do you evaluate whether a proposed classification approach is real? How do you filter 
bold claims? 
Proposed classification schemes should be physics-based, principled, and transparent, with a set 
process for quantitative decision making. They should have a development history that provides 
well-documented and predictable results in controlled experiments, such as test stands and test sites, 
followed by comprehensive, well-documented demonstration of success at a real field site. So-called 
black-boxes in which the methods and decision-making criteria are not transparent should be viewed 
with skepticism.  
 
What about munitions constituents? 
None of the classification work demonstrated in this program is applicable to munitions 
constituents. 
 
There is always some concern about items not being detected. What affect does this have on 
implementing classification? 
Detection and classification should be thought of as separate sequential steps. If an item is not 
detected, there is no opportunity to classify it. The classification step is performed only on those 
signals selected as detections, and applying classification can neither improve nor hinder the 
detection step. 
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Where could classification fit into the regulatory/munitions response process? 
There are several applications for the information gained from classification on a site. Site managers 
can use the ranked dig list to select an appropriate point to stop digging and leave the remainder of 
the detected items in the ground. 
 
The results of classification could also be applied to a site where all items will be dug. It is expensive 
to deploy UXO technicians and in some cases expensive shielding equipment and exclusion zones to 
support digging of all detected items at a site. The ranked dig list produced from classification could 
be used to manage dig teams by deploying these measures only where they are necessary. 
 
In the Site Inspection or Remedial Investigation phase, where the objective is to determine the 
nature and extent of the contamination, classification can be used to guide investigative digging. 
Sampling items with a variety of physical parameters can lead to a more complete understanding of 
the site. 
 
What type of sites is classification applicable to?  
The pilot project has only validated classification technology on a simple site with a single munition 
type, benign to moderate geology, limited vegetation, and flat terrain. The influence of site 
characteristics such as multiple munitions types and interfering geology will be tested in a continuing 
ESTCP effort that will span several years. The objective is to further define types of sites where 
classification would be appropriate.  
 
How do I perform classification on my site? 
Commercially available technologies were tested as part of this program and showed substantial 
classification performance. The first step is to collect 100% coverage digital geophysical data over 
the survey area. For example, EM61-MK2 data can be collected with a cart using tighter lane spacing 
than would be currently used for a detection-only survey (0.5-m spacing in this case), but the process 
uses normal commercial data collection and operator procedures. A detection list is generated from 
the sensor data set and an appropriate threshold is chosen. For this program, the threshold was set 
based on the signal from the munitions target of interest at a depth 11 times the diameter, the de facto 
expectation for detectability with modern geophysical equipment. A 50% safety margin was applied 
to the modeled signal at the item’s least favorable orientation. 
  
The detected anomalies can be analyzed using the commercially available UX-Analyze module of the 
Geosoft software Oasis montaj. Each anomaly can be analyzed to extract features such as size, 
depth, aspect ratio, and electromagnetic decay rate. Classification algorithms then use these features 
to assign a probability that the item is a munition or nonhazardous. This information is used to 
create a ranked dig list that orders all anomalies from highest confidence an item is nonhazardous to 
highest confidence an item is a munition. A point on the dig list can be selected by a project team to 
identify which items must be treated as potential munitions based on the site-remediation objectives. 
Additional sensor and data analysis technologies were successful in this project.  
 
What technologies are needed for classification? 
Digital geophysical data are required for classification. Both magnetometer and electromagnetic 
induction data can be used for analysis. Each of these sensors have strengths and weaknesses, and 
the decision of which sensor to use will depend upon site conditions and objectives. Magnetometers 
can locate relatively deeper ferrous items, but can only detect ferrous materials, and their 
effectiveness is reduced by magnetic geology. Electromagnetic induction sensors detect ferrous and 
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nonferrous metallic objects and can be effective in geology that challenges magnetometers. EM has 
a limited depth of investigation due to faster signal fall-off over distance than a magnetometer. Care 
should be taken with data collection to ensure precise sensor location and 100% coverage, which 
directly impact classification performance. 
 
Data-analysis requires feature extraction (i.e., size, depth, aspect ratio) from each of the detected 
anomalies and classification of these anomalies by assigning a confidence they are likely munitions or 
nonhazardous items. This process can be conducted in the commercially available Geosoft software 
package Oasis montaj as part of the UX-Analyze module.  
 
Why doesn’t current practice classify munitions and clutter? 
Current practice is motivated by detection, which sets the data requirements and the decision 
process. There is no reason in principle that the decision process could not be modified to add a 
classification step. Current commercial instruments as they are deployed by the contractor 
community can collect data that may be used for classification. In most cases, doing so would 
require revisiting the data requirements. 
 
Can classification approaches identify individual items within a cluster of buried items? 
The current sensors and classification algorithms are effective only on individual isolated anomalies 
and do not allow reliable parameter extraction and classification of overlapping clustered anomalies. 
High-density target centers would not be an appropriate location to apply classification. Current 
classification approaches can be applied to areas surrounding high-density target centers where 
isolated anomalies are present. For the purposes of this study, anomalies were considered “isolated” 
if they were 2 m from the closest adjacent anomaly. It is not envisioned that classification 
approaches will be applied to the target center, but research is being conducted to analyze 
overlapping signatures that would likely allow analysis closer to the target center than existing 
methods. 
 
How can I confirm the technologies perform as they are designed to? How can I be 
confident in the results? 
The techniques used in this study to confirm technology performance can be utilized in operational 
classification applications. A geophysical proveout (GPO) was established on a small representative 
section of the site to verify detection thresholds for all data collection systems. The intent of the 
GPO was to verify that the targets of interest are detected at the depths of interest under site-
specific conditions at the selected threshold. The GPO consisted of seeded mortar rounds and 
splayed half-rounds. The burial depths were biased shallow to provide high signal-to-noise training 
data, though a few rounds are buried to a depth of 11 times their diameter to verify detection by the 
geophysical sensors. In addition to the GPO, mortar rounds were also seeded in the survey area 
itself. The use of a GPO and seeding are both recommended in an operational classification 
application. 
 
All items above the detection threshold were dug in this study to verify the performance of the 
sensors and the analysis methods. In an operational application, the ultimate objective is to dig only 
the munitions and leave the clutter. Random digging beyond the threshold is unlikely to be useful. 
The number of intact munitions present on most sites is very small, and randomly finding a 
misclassified munition, if it is present, among overwhelming clutter is very unlikely. This will likely 
be effective in confirming cultural clutter and munitions-related scrap assignments rather than 
finding incorrectly classified munitions.  
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A small portion of the site could be dug completely to confirm the performance of the technologies 
and refine the classification algorithms. Alternatively, selected anomalies on the dig list could be 
sampled. The selection of these anomalies could be based on sampling various estimated parameters 
from the inversion step to confirm the results are physically reasonable. 
 
What if data collected for an anomaly cannot support reliable parameter extraction to 
identify its features? 
For the purposes of this study, these items were not analyzed and were added to the dig list. 
Demonstrators were generally successful at determining when reliable model fits were not achieved.   
 
How do I determine where to set the threshold once a dig list is created? 
There are several factors that can influence this decision. It is recommended the project team weigh 
the site objectives. Factors such as future land use should be considered. This decision process could 
be iterative and the point could be moved if information is gained from any validation digging that 
occurs. 
 
Is classification applicable to marine sites? 
There is no reason in principle that classification could not be performed on magnetometer or EM 
data collected at a marine site. The parameter-extraction process for magnetic data would be 
identical, and the physics that must be accommodated to account for differences in the EM signal is 
well understood and could be readily implemented. However, no system that can take data to 
support classification has yet been demonstrated.  
 
Can you do classification with helicopter data? 
Classification from a helicopter platform is expected to be very limited. There are existing 
magnetometer systems that can take high-density, well-located data at low altitude from a helicopter 
platform. It is possible to analyze these data to obtain estimates of the target size and depth. The 
success will depend on the size of the targets of interest and the altitude that can be maintained. For 
EM systems, where the signal falloff is faster than for magnetometers, no system that collects data 
appropriate to classification has been demonstrated to date. This is expected to be more limited 
both because the signal falls off faster with the separation of the target and sensor and because the 
data requirements are more stringent for parameter extraction from EM data. 
 
Can you use this in the center of an impact area? 
Classification to date has been demonstrated only on isolated targets. In areas where the target 
density is very high and many signals will overlap, such performance has not been demonstrated. 
This is currently the subject of research, and progress is expected in classification of overlaps of two 
or three signals and in the analysis of a single strong target shielded by small surface clutter. It is not 
expected that the current processes for classification will evolve to provide acceptable performance 
in the centers of impact areas, where individual signals are not separable. 
 
How much does classification cost? 
After only a single demonstration, which was a learning exercise for all involved, sufficient data do 
not exist to make a quantitative cost estimate. As with all surveys and data analysis, the cost of 
classification will depend on the size of the site and its conditions, as well as the objective. Generally, 
data-collection costs will be higher and processing will be more involved. 
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How long does it take to collect data and conduct analysis? 
Data collection can range from 1 to 20 acres/day depending upon if the system is man-portable or 
towed. If the data density required for classification is twice that required for detection only, the 
field deployment can be expected to approximately double. Data-analysis times will vary depending 
upon the number of anomalies detected and the presence of complicating factors such as geology. 
For the roughly 1000 anomalies analyzed in this demonstration, the data analysis required less than 1 
person-week for the magnetometer data and less than 2 weeks for the EM. As the classification 
procedures become better defined, this is likely to decrease. 
 
How specialized is this? What contractor qualifications are required? 
Some of the algorithms used in this demonstration are available in a beta version of a package called 
UXAnalyze, which runs in Oasis montaj. The contractor that collected the cart data in this program 
downloaded this package and used it to perform successful classification. No special qualifications 
are needed to run this program beyond those usually held by the geophysicist or data analyst 
typically involved in a project. It is necessary that the individual understand and be able to evaluate 
data quality, as well as assess whether reasonable answers are obtained.  
 
What emerging classification capabilities should I watch? 
Vastly improved classification performance was demonstrated in this study using a multi-axis data 
collection system called the Berkeley UXO Discriminator (BUD). This sensor is one of several new 
generation EM sensors that gather substantially more information in the signals because the systems 
make measurements at a variety of angles over buried objects. While these sensor systems and 
associated data-analysis approaches are still in development, they show promise in significantly 
improving classification performance.  
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ACRONYMS 
 

BUD Berkeley UXO Discriminator 
DoD Department of Defense 
EM Electromagnetic Induction 
ESTCP Environmental Security Technology Certification Program 
GPO Geophysical Prove Out 
GPS Global Positioning System 
IDA Institute for Defense Analyses 
IMU Inertial Measurement Unit 
LBNL Lawrence Berkeley National Laboratory 
MAG Magnetometer 
MMRP Military Munitions Response Program 
NRL Naval Research Laboratory 
QC Quality Control 
ROC Receiver Operating Characteristic 
SNR Signal-to-Noise Ratio 
UXO Unexploded Ordnance 

 


